欢迎来到七七文库! | 帮助中心 分享价值,成长自我!
七七文库
全部分类
  • 幼教>
  • 小学>
  • 初中>
  • 高中>
  • 职教>
  • 高教>
  • 办公>
  • 资格考试>
  • 行业>
  • ImageVerifierCode 换一换
    首页 七七文库 > 资源分类 > DOC文档下载
    分享到微信 分享到微博 分享到QQ空间

    专题1.5 以向量与解析几何、三角形等相结合为背景的选择题高考数学压轴题分项讲义(解析版)

    • 资源ID:96857       资源大小:1.86MB        全文页数:12页
    • 资源格式: DOC        下载积分:20积分
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录 微博登录
    二维码
    微信扫一扫登录
    下载资源需要20积分
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,更优惠
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    专题1.5 以向量与解析几何、三角形等相结合为背景的选择题高考数学压轴题分项讲义(解析版)

    1、专题一 压轴选择题 第五关 以向量与解析几何、三角形等相结合为背景的选择题【名师综述】近年来以平面向量知识为背景,与三角函数、数列、三角形、解析几何知识相结合的题目屡见不鲜,题目对基础知识和技能的考查一般由浅入深,入手并不难,但要圆满解决,则需要严密的逻辑推理.平面向量融数、形于一体,具有几何与代数的“双重身份”,从而它成为了中学数学知识交汇和联系其他知识点的桥梁.平面向量的运用可以拓宽解题思路和解题方法.类型一 平面向量与解三角形的结合典例1 在中,角,所对的边分别为,满足,则的取值范围是( )A B C D【答案】B【解析】,由余弦定理可得,因为是三角形内角,是钝角由正弦定理可得,同理三角

    2、形中,的取值范围为:,故选项为B【名师指点】由余弦定理可得角A的大小,平面向量数量积向量式是实现向量和三角形边、角转化的桥梁,而正弦定理又是进行三角形边角转化的工具最值将的取值范围问题转化为三角函数的值域问题处理【举一反三】【河南省南阳市2019届高三上学期期中考试】已知ABC的外接圆半径为2,D为该圆上一点,且,则ABC的面积的最大值为()A4 B3 C4 D3【答案】C类型二 向量与三角形”四心”的结合典例2 已知的外接圆半径为1,圆心为点,且,则的值为( )A B C. D【答案】C【解析】:因为,所以,所以,又因为,所以,同理可求,所以,故选C.学#【名师指点】为了将已知和结论建立联系

    3、,将分解转化为,为了出现和,将已知向量方程移项平方可求来源:ZXXK【举一反三】【江西省赣州市十四县(市)2019届高三上学期期中联考】在中, ,是的内心,若,其中,动点的轨迹所覆盖的面积为( )A B C D【答案】A【解析】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,动点P的轨迹所覆盖图形的面积为2SAOB;在ABC中,cos,AC=6,BC=7;由余弦定理得,;解得:AB=5,或AB=(舍去);又O为ABC的内心;所以内切圆半径r=,所以=;动点P的轨迹所覆盖图形的面积为故答案为:A类型三 向量与三角函数的结合典例3 已知向量则= 、= ,设函数R),取得最大值时的x的值

    4、是 .【答案】,Z【名师指点】三角函数的图象和性质是中学数学中的重要内容和工具,也高考和各级各类考试的重要内容和考点.本题以向量的坐标形式为背景考查的是三角函数的图象和性质及三角变换的有关知识和运用.解答本题时要充分利用题设中提供的有关信息,依据向量的数量积公式建立方程,求出.然后再化简和构建函数运用三角函数的图象和性质使得问题获解.【举一反三】已知函数图像上的一个最低点为A,离A最近的两个最高点分别为B与C,则( )A B C D【答案】D类型四 向量在解析几何中的应用典例4已知为双曲线的左焦点,点为双曲线虚轴的一个顶点,过的直线与双曲线的一条渐近线在轴右侧的交点为,若,则此双曲线的离心率是

    5、( )A B C. D【答案】A【解析】的方程为,即,联立得,所以,解得,故选A.学-【名师指点】对向量式的处理是高效解题的关键,向量是既有大小又有方向的量,所以向量具有数与形的双重作用,从数的角度来讲,利用向量式可以找到三点坐标的关系,从形的角度来讲,可以将向量式转化为线段长度的比例关系【举一反三】【广东省珠海市2019届高三9月摸底考试】设是双曲线的左右焦点,为左顶点,点为双曲线右支上一点, , 为坐标原点,则A B C D【答案】D【解析】由题得所以双曲线的方程为,所以点P的坐标为(5,)或(-5,-),所以.故答案为:D【精选名校模拟】1. 【山东省聊城市第一中学2019届高三上学期期

    6、中考试】已知M是ABC内的一点,且,若MBC,MCA和MAB的面积分别为1,则的最小值是( )A2 B8 C6 D3【答案】D【解析】,化为则,而 =5+4=9,当且仅当,即时取等号,故的最小值是9,故选:D来源:2. 【湖北省宜昌市示范高中协作体2019届高三上学期期中联考】已知ABC的三个内角A、B、C所对边长分别为a、b、c,向量=(ac,ab),=(b,ac),若,则C=( )A B C D【答案】B3. 【甘肃省兰州第一中学2019届高三12月月考】已知非零向量,满足,若函数在R上存在极值,则和夹角的取值范围为( )A B C D【答案】B【解析】解:,来源:ZXXKf(x)在R上存

    7、在极值;f(x)=0有两个不同实数根;;即,因为,;与夹角的取值范围为 . 故选:B4. 【山东省实验中学2019届高三第二次诊断性考试】已知均为单位向量,满足,设,则的最小值为:A B0 C D1【答案】C来源:Z.xx.k.Com【解析】由|=1可设C(cos ,sin ),又=,所以cosBOA=,所以BOA=.因为|=|=1,可设A(,),B(1,0),=x+y,所以所以,因为,所以(1)因为,所以,(2)由(1)(2)得所以当x+y最小值为.故答案为:C5. 在中,、的对边分别为、,且,则的面积为( )A B C D【答案】C【解析】由,根据正弦定理可得,;再根据,得,所以的面积为,

    8、故C为正确答案6. 【河北省衡水市武邑中学2019届高三模拟】已知为抛物线的焦点, 为抛物线上三点,当时,称为“和谐三角形”,则“和谐三角形”有( )A0个 B1个 C3个 D无数个【答案】D【解析】抛物线方程为为曲线上三点,当时,为的重心,用如下办法构造,连接并延长至,使,当在抛物线内部时,设,若存在以为中点的弦,设,则则,两式相减化为,所以总存在以为中点的弦,所以这样的三角形有无数个,故选D.7. 【湖北省咸宁市2018届高三重点高中11月联考】在锐角中,角, , 对应的边分别是、,向量, ,且,则的取值范围是( )A. B. C. D. 【答案】B【解析】因为ABC是锐角三角形,所以由正

    9、弦定理,可得:本题选择B选项.8. 已知向量,则函数的最小正周期与最大值分别为( )A B C D【答案】B9. 已知, 、分别在轴和轴上滑动, 为坐标原点, ,则动点的轨迹方程是( )A. B. C. D. 【答案】D【解析】设动点即故选D10.已知圆的方程,是椭圆上一点,过作圆的两条切线,切点为,则的取值范围为( )A B 来源:Z&X&X&KC D【答案】C【解析】设,设,设,由又的取值范围为,故选C.11. 【湖北省武汉市武昌区2018届高三元月调研考试】过抛物线: 的焦点的直线与抛物线C交于, 两点,与其准线交于点,且,则A. B. C. D. 1【答案】B【解析】画出图像如下图所示

    10、,根据抛物线的定义, ,根据相似三角形,结合已知有.学-12. 【2019广东省惠州市第一中学模拟】在中,分别为三个内角A、B、C所对的边,设向量 ,若向量,则角A的大小为 ( )A B C D【答案】B【解析】来源:Zxxk.Com,(b-c)b+(ca)(c+a)=0,b2+c2a2=bc,cosA=,又因为是在三角形中,A=故选:B13. 【2019山东省枣庄市第八中学模拟】函数在上的图象与轴交于点,过点的直线与函数的图象交于点、两点,则( )A B C32 D【答案】C【解析】由得,即,A是的零点,B、C两点关于A对称,故选C14. 【湖南省长沙市第一中学2019届高三第八次月考】已知 ,,若是以为直角点的等腰直角三角形,则的面积等于( )A B C D【答案】A【解析】向量()与()垂直且模相等,以向量、为邻边的平行四边形为正方形,|=|=,即|=|=,SOAB=|=1故选:A


    注意事项

    本文(专题1.5 以向量与解析几何、三角形等相结合为背景的选择题高考数学压轴题分项讲义(解析版))为本站会员(hua****011)主动上传,七七文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知七七文库(点击联系客服),我们立即给予删除!




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    工信部备案编号:浙ICP备05049582号-2     公安备案图标。浙公网安备33030202001339号

    本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。如您发现文档所含内容侵犯了您的版权或隐私,请立刻联系我们并提供证据,我们将立即给予删除!

    收起
    展开