2020届河北省保定一中高三上学期第二次阶段测试数学(文)试题(解析版)
《2020届河北省保定一中高三上学期第二次阶段测试数学(文)试题(解析版)》由会员分享,可在线阅读,更多相关《2020届河北省保定一中高三上学期第二次阶段测试数学(文)试题(解析版)(20页珍藏版)》请在七七文库上搜索。
1、2020届河北省保定一中高三上学期第二次阶段测试数学(文)试题一、单选题1设集合.则ABCD【答案】A【解析】解二个不等式,化简集合,先求出,最后求出.【详解】因为,所以,因此,所以,故本题选A.【点睛】本题考查了集合的交集、补集运算,正确解不等式是解题的关键.2复数(是虚数单位)在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限【答案】B【解析】复数,其在复平面上对应的点为,该点位于第二象限故选点晴:本题重点考查复数的基本运算和复数的概念.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如,其次要熟悉复数的相关基本概念,如复数的实部为,虚部为,模为,对应点为,共轭复
2、数为3下列函数中,既是偶函数又在区间上单调递增的是( )ABCD【答案】B【解析】判断每一个函数的奇偶性和单调性得解.【详解】A. ,是奇函数不是偶函数,所以该选项错误;B. ,所以函数是偶函数,由于函数在区间上是增函数,所以函数在区间上单调递增,所以该选项是正确的;C. 不是偶函数,所以该选项是错误的;D. ,所以函数是偶函数,由于函数在区间上是增函数,在上是减函数,所以函数在上是减函数,所以该选项错误.故选:B【点睛】本题主要考查函数的奇偶性和单调性的判断,意在考查学生对这些知识的理解掌握水平.4已知函数,若,则,的大小关系为( )ABCD【答案】D【解析】根据奇偶性定义可判断出为奇函数,
3、且可判断出在上单调递增;利用奇偶性将变为;比较自变量之间的大小关系,根据单调性可得函数值之间的大小关系,从而得到结果.【详解】由题意知:定义域为:,且为定义在上的奇函数当时,单调递增且 即:本题正确选项:【点睛】本题考查利用函数奇偶性和单调性比较大小的问题,关键是能够通过函数性质将问题转化为自变量之间的比较.5不等式组的解集为D,有下面四个命题:,其中的真命题是( )ABCD【答案】B【解析】试题分析:画出可行域,如图所示,设,则,当直线过点时,取到最小值,故的取值范围为,所以正确的命题是,选B【考点定位】1、线性规划;2、存在量词和全称量词6执行如图所示的程序框图,则输出的( )A3B4C5
4、D6【答案】C【解析】依次循环为 ; ; ;结束循环,输出 ,选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7函数的图象大致为( )ABCD【答案】A【解析】分别令,根据的函数值,对选项进行排除,由此得出正确选项.【详解】由四个选项的图像可知,令,由此排除C选项.令,由此排除B选项.由于,排除D选项.故本小题选A.【点睛】本小题主要考查函数图像的判断,考查利用特殊点排除的方法,属于基础题.8设函数若为奇函数,则
5、曲线在点处的切线方程为()ABCD【答案】D【解析】【详解】分析:利用奇函数偶次项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.9已知在各项为正数的等比数列中,与的等比中项为8,则取最小值时,首项( )A8B4C2D1【
6、答案】C【解析】由题意可得,可得,由基本不等式和等比数列的通项公式可得结果.【详解】,设公比为,当且仅当,即时取等号,此时,故选C.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有等比数列的性质,利用基本不等式求最值,属于简单题目.10已知,若,则的值为( )ABCD【答案】C【解析】运用平面向量数量积的坐标表示公式,结合,可以求出,结合,根据同角三角函数的关系式,可以求出,最后利用两角和的正切公式求出的值.【详解】,所以.因为,所以,所以,所以.【点睛】本题考查了平面向量数量积的坐标表示公式,考查了同角的三角函数关系式,考查了两角和的正切公式,考查了数学运算能力.11函数
7、的图象恒过定点A,若点A在直线上,其中,则的最小值为( )A4B5C6D【答案】D【解析】由指数函数的性质得出点的坐标,将点的方程代入直线方程得出,然后将代数式与相乘,展开后利用基本不等式可得出的最小值.【详解】令,得,则,函数的图象恒过点,点在直线上,可得,由基本不等式得,当且仅当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查基本不等式求最值,考查指数型函数过定点问题,解题的关键在于根据已知条件得出定值条件,并对代数式进行合理配凑与变形,考查分析问题与解决问题的能力,属于中等题.12已知定义在上的奇函数,满足,当时,若函数,在区间上有10个零点,则的取值范围是( )ABCD【答案
8、】A【解析】由得出函数的图象关于点成中心对称以及函数的周期为,由函数为奇函数得出,并由周期性得出,然后作出函数与函数的图象,列举前个交点的横坐标,结合第个交点的横坐标得出实数的取值范围。【详解】由可知函数的图象关于点成中心对称,且,所以,所以,函数的周期为,由于函数为奇函数,则,则,作出函数与函数的图象如下图所示:,则,于是得出,由图象可知,函数与函数在区间上从左到右个交点的横坐标分别为、,第个交点的横坐标为,因此,实数的取值范围是,故选:A。【点睛】本题考查方程的根与函数的零点个数问题,一般这类问题转化为两个函数图象的交点个数问题,在画函数的图象时,要注意函数的奇偶性、对称性、周期性对函数图
9、象的影响,属于难题。二、填空题13若对任意的,不等式恒成立,则实数的取值范围为_.【答案】【解析】利用绝对值三角不等式求得的最大值为,解不等式,即可得结果【详解】,要使恒成立,则,或,即或,实数的取值范围是.故答案为.【点睛】本题主要考查绝对值三角不等式的应用以及不等式恒成立问题,属于难题不等式恒成立问题常见方法: 分离参数恒成立(即可)或恒成立(即可); 数形结合( 图象在 上方即可); 讨论最值或恒成立.14已知两个单位向量,的夹角为,若向量,则 _.【答案】-6【解析】【详解】(-2)(3+4)=其中=1,=11=,原式=31-281=-615已知a,b,c分别为的三个内角A,B,C的对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 河北省 保定 中高 学期 第二次 阶段 测试 数学 试题 解析
链接地址:https://www.77wenku.com/p-104864.html