2.3.2双曲线的几何性质 学案(含答案)
《2.3.2双曲线的几何性质 学案(含答案)》由会员分享,可在线阅读,更多相关《2.3.2双曲线的几何性质 学案(含答案)(9页珍藏版)》请在七七文库上搜索。
1、2.3.2双曲线的几何性质学习目标1.了解双曲线的几何性质,如范围、对称性、顶点、渐近线和离心率等.2.能用双曲线的简单性质解决一些简单问题.3.能区别椭圆与双曲线的性质知识点一双曲线的几何性质思考类比椭圆的几何性质,结合图象,你能得到双曲线1(a0,b0)的哪些几何性质?答案范围、对称性、顶点、离心率、渐近线梳理标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xaya或ya对称性对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原点顶点坐标A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,)知识点二双曲线的离心率思考在椭圆中,椭圆的离心率
2、可以刻画椭圆的扁平程度,在双曲线中,双曲线的“张口”大小是图象的一个重要特征,怎样描述双曲线的“张口”大小呢?答案双曲线1的各支向外延伸逐渐接近渐近线,所以双曲线的“张口”大小取决于的值,设e,则.当e的值逐渐增大时,的值增大,双曲线的“张口”逐渐增大梳理定义:双曲线的焦距与实轴长的比e,叫做双曲线的离心率性质:离心率e的取值范围是(1,)e越大,双曲线的张口越大知识点三双曲线的相关概念实轴和虚轴等长的双曲线叫做等轴双曲线,它的渐近线方程是yx,离心率为.1等轴双曲线的离心率是1.()2椭圆的离心率与双曲线的离心率取值范围相同()3双曲线有四个顶点,分别是双曲线与其实轴及虚轴的交点()4方程1
3、(a0,b0)的渐近线方程为yx.()类型一已知双曲线的标准方程研究几何性质例1求双曲线x23y2120的实轴长、虚轴长、焦点坐标、顶点坐标、渐近线方程、离心率解将方程x23y2120化为标准方程为1,a24,b212,a2,b2,c4,双曲线的实轴长为2a4,虚轴长为2b4;焦点坐标为F1(0,4),F2(0,4);顶点坐标为A1(0,2),A2(0,2);渐近线方程为yx;离心率e2.反思与感悟已知双曲线方程求其几何性质时,若不是标准方程的要先化成标准方程,确定方程中a,b的对应值,利用c2a2b2得到c,然后确定双曲线的焦点位置,从而写出双曲线的几何性质跟踪训练1求双曲线9y24x236
4、的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程解将9y24x236变形为1,即1,a3,b2,c,因此顶点坐标为(3,0),(3,0);焦点坐标为(,0),(,0);实轴长是2a6,虚轴长是2b4;离心率e;渐近线方程为yxx.类型二由双曲线的几何性质确定标准方程例2求适合下列条件的双曲线的标准方程:(1)虚轴长为12,离心率为;(2)顶点间距离为6,渐近线方程为yx;(3)求与双曲线x22y22有公共渐近线,且过点M(2,2)的双曲线方程解(1)设双曲线的标准方程为1或1(a0,b0)由题意知2b12,且c2a2b2,b6,c10,a8,双曲线的标准方程为1或1.(2)设以yx为渐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3
链接地址:https://www.77wenku.com/p-105158.html