第3章导数及其应用习题课:导数的应用 学案(含答案)
《第3章导数及其应用习题课:导数的应用 学案(含答案)》由会员分享,可在线阅读,更多相关《第3章导数及其应用习题课:导数的应用 学案(含答案)(9页珍藏版)》请在七七文库上搜索。
1、习题课导数的应用学习目标1.能利用导数研究函数的单调性.2.理解函数的极值、最值与导数的关系.3.掌握函数的单调性、极值与最值的综合应用知识点一函数的单调性与其导数的关系定义在区间(a,b)内的函数yf(x)f(x)的正负f(x)的单调性f(x)0单调递增f(x)0,右侧f(x)0,那么f(x0)是极大值(2)如果在x0附近的左侧f(x)0,那么f(x0)是极小值知识点三函数yf(x)在a,b上最大值与最小值的求法1求函数yf(x)在(a,b)内的极值2将函数yf(x)的极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值1函数yxln x在上是减函数()2若
2、函数yaxln x在内单调递增,则a的取值范围为(2,)()3设函数f(x)x(xc)2在x2处有极大值,则c2.()4函数f(x)x(1x2)在0,1上的最大值为.()类型一导数与函数单调性命题角度1讨论函数单调性例1已知函数f(x)ln x,g(x)f(x)ax2bx,其中g(x)的函数图象在点(1,g(1)处的切线平行于x轴(1)确定a与b的关系;(2)若a0,试讨论函数g(x)的单调性解(1)依题意得g(x)ln xax2bx,则g(x)2axb.由函数g(x)的图象在点(1,g(1)处的切线平行于x轴得g(1)12ab0,b2a1.(2)由(1)得g(x).函数g(x)的定义域为(0
3、,),当a0时,g(x).由g(x)0得0x1,由g(x)0得x1,即函数g(x)在(0,1)上单调递增,在(1,)上单调递减;当a0时,令g(x)0得x1或x,若1,即a,由g(x)0得x1或0x,由g(x)0得x1,即函数g(x)在,(1,)上单调递增,在上单调递减;若1,即0a,由g(x)0得x或0x1,由g(x)0得1x,即函数g(x)在(0,1),上单调递增,在上单调递减;若1,即a,在(0,)上恒有g(x)0,即函数g(x)在(0,)上单调递增综上可得,当a0时,函数g(x)在(0,1)上单调递增,在(1,)上单调递减;当0a0,故f(x)在(0,)上单调递增;当a0时,f(x)0
4、,故f(x)在(0,)上单调递减;当0a1时,令f(x)0,解得x,则当x时,f(x)0,故f(x)在上单调递减,在上单调递增综上所述,当a1时,f(x)在(0,)上单调递增;当a0时,f(x)在(0,)上单调递减;当0a1时,f(x)在上单调递减,在上单调递增命题角度2由函数单调性求参数范围例2已知函数f(x)x3ax1.(1)讨论f(x)的单调性;(2)若f(x)在R上为增函数,求实数a的取值范围解(1)f(x)3x2a.当a0时,f(x)0,所以f(x)在(,)上为增函数当a0时,令3x2a0得x;当x或x时,f(x)0;当x时,f(x)0.因此f(x)在,上为增函数,在上为减函数综上可
5、知,当a0时,f(x)在R上为增函数;当a0时,f(x)在,上为增函数,在上为减函数(2)因为f(x)在(,)上是增函数,所以f(x)3x2a0在(,)上恒成立,即a3x2对xR恒成立因为3x20,所以只需a0.又因为a0时,f(x)3x20,f(x)x31在R上是增函数,所以a0,即a的取值范围为(,0引申探究1函数f(x)不变,若f(x)在区间(1,)上为增函数,求a的取值范围解因为f(x)3x2a,且f(x)在区间(1,)上为增函数,所以f(x)0在(1,)上恒成立,即3x2a0在(1,)上恒成立,所以a3x2在(1,)上恒成立,所以a3,即a的取值范围为(,32函数f(x)不变,若f(
6、x)在区间(1,1)上为减函数,试求a的取值范围解由f(x)3x2a0在(1,1)上恒成立,得a3x2在(1,1)上恒成立因为1x1,所以3x23,所以a3.即当a的取值范围为3,)时,f(x)在(1,1)上为减函数3函数f(x)不变,若f(x)的单调递减区间为(1,1),求a的值解由例题可知,f(x)的单调递减区间为,1,即a3.4函数f(x)不变,若f(x)在区间(1,1)上不单调,求a的取值范围解f(x)x3ax1,f(x)3x2a.由f(x)0,得x(a0)f(x)在区间(1,1)上不单调,01,得0a3,即a的取值范围为(0,3)反思与感悟f(x)为(a,b)上的增函数的充要条件是对
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第3章导数及其应用习题课:导数的应用 学案含答案 导数 及其 应用 习题 答案
链接地址:https://www.77wenku.com/p-105170.html