2.1.2演绎推理 学案(含答案)
《2.1.2演绎推理 学案(含答案)》由会员分享,可在线阅读,更多相关《2.1.2演绎推理 学案(含答案)(8页珍藏版)》请在七七文库上搜索。
1、2.1.2演绎推理学习目标1.了解演绎推理的意义.2.掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的区别和联系知识点一演绎推理思考分析下面几个推理,找出它们的共同点(1)所有的金属都能导电,铀是金属,所以铀能够导电;(2)一切奇数都不能被2整除,(21001)是奇数,所以(21001)不能被2整除答案问题中的推理都是从一般性的原理出发,推出某个特殊情况下的结论梳理演绎推理的含义及特点含义由一般性的命题推演出特殊性命题的推理方法特点(1)演绎的前提是一般性原理,演绎所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中;(2)在演绎推理中,前提
2、与结论之间存在必然的联系;(3)演绎推理是一种收敛性的思维方法,它较少创造性,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化知识点二三段论思考所有的金属都能导电,铜是金属,所以铜能导电,这个推理可以分为几段?答案分为三段梳理三段论一般模式常用格式大前提提供了一个一般性的原理M是P小前提指出了一个特殊对象S是M结论揭示了一般原理与特殊对象的内在联系S是P1“三段论”就是演绎推理()2演绎推理的结论一定是正确的()3演绎推理是由特殊到一般再到特殊的推理()4在演绎推理中,大前提描述的是一般性原理,小前提描述的是大前提里的特殊情况,结论是根据一般性原理对特殊情况作出的判断()类型一
3、演绎推理与三段论例1将下列演绎推理写成三段论的形式(1)平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分;(2)等腰三角形的两底角相等,A,B是等腰三角形的两底角,则AB;(3)通项公式为an2n3的数列an为等差数列解(1)平行四边形的对角线互相平分,(大前提)菱形是平行四边形,(小前提)菱形的对角线互相平分(结论)(2)等腰三角形的两底角相等,(大前提)A,B是等腰三角形的两底角,(小前提)AB.(结论)(3)在数列an中,如果当n2时,anan1为常数,则an为等差数列,(大前提)当通项公式为an2n3时,若n2,则anan12n32(n1)32(常数),(小前提)
4、通项公式为an2n3的数列an为等差数列(结论)反思与感悟用三段论写推理过程时,关键是明确大、小前提,三段论中的大前提提供了一个一般性的原理,小前提指出了一种特殊情况,两个命题结合起来,揭示了一般原理与特殊情况的内在联系有时可省略小前提,有时甚至也可把大前提与小前提都省略,在寻找大前提时,可找一个使结论成立的充分条件作为大前提跟踪训练1将下面的演绎推理写成三段论的形式:(1)所有椭圆的离心率e的取值范围为(0,1),曲线C:y21是椭圆,所以曲线C的离心率e的取值范围为(0,1)(2)等比数列的公比都不为零,数列2n(nN*)是等比数列,所以数列2n的公比不为零解(1)大前提:所有椭圆的离心率
5、e的取值范围为(0,1)小前提:曲线C:y21是椭圆结论:曲线C的离心率e的取值范围为(0,1)(2)大前提:等比数列的公比都不为零小前提:数列2n(nN*)是等比数列结论:数列2n的公比不为零类型二演绎推理的应用命题角度1证明几何问题例2如图,D,E,F分别是BC,CA,AB上的点,BFDA,DEBA,求证:EDAF,写出三段论形式的演绎推理证明因为同位角相等,两直线平行,(大前提)BFD与A是同位角,且BFDA,(小前提)所以FDAE.(结论)因为两组对边分别平行的四边形是平行四边形,(大前提)DEBA,且FDAE,(小前提)所以四边形AFDE为平行四边形(结论)因为平行四边形的对边相等,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.1
链接地址:https://www.77wenku.com/p-105331.html