2019届西藏拉萨市高三下学期第二次模拟考试数学(理)试题(解析版)
《2019届西藏拉萨市高三下学期第二次模拟考试数学(理)试题(解析版)》由会员分享,可在线阅读,更多相关《2019届西藏拉萨市高三下学期第二次模拟考试数学(理)试题(解析版)(18页珍藏版)》请在七七文库上搜索。
1、2019届西藏拉萨市高三下学期第二次模拟考试数学(理)试题一、单选题1已知集合,则=ABCD【答案】C【解析】可求出集合A,B,然后进行交集的运算即可【详解】,;ABx|1x2故选:C【点睛】考查描述法的定义,对数函数的定义域,一元二次不等式的解法,交集的运算2若复数满足,则ABCD1【答案】D【解析】把已知等式变形,利用复数代数形式的乘除运算化简求得z,再由复数模的计算公式求解【详解】由(z+1)i1+i,得z+1,zi,则|z|1故选:D【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题3在普通高中新课程改革中,某地实施“3+1+2”选课方案该方案中“2”指的是从政治、地理
2、、化学、生物4门学科中任选2门,假设每门学科被选中的可能性相等,那么政治和地至少有一门被选中的概率是()ABCD【答案】D【解析】本题可从反面思考,两门至少有一门被选中的反面是两门都没有被选中,两门都没被选中包含1个基本事件,代入概率的公式,即可得到答案.【详解】设两门至少有一门被选中,则两门都没有选中,包含1个基本事件,则,所以,故选D.【点睛】本题主要考查了古典概型及其概率的计算,其中解答中合理应用对立事件和古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.4的展开式中的系数为( )A-80B-40C40D80【答案】C【解析】由题意分别找到展开式中和的系数
3、,然后相加得到项的系数.【详解】要求的展开式中的系数则中与展开式中相乘,以及中与展开式中相乘而展开式中,项为,项为.所以的展开式中的项为故选C项【点睛】本题考查二项式展开式与多项式相乘,其中某一项的系数,属于基础题.5经统计,某市高三学生期末数学成绩,且,则从该市任选一名高三学生,其成绩不低于90分的概率是A0.35B0.65C0.7D0.85【答案】A【解析】由已知直接利用正态分布曲线的对称性求解【详解】学生成绩X服从正态分布N(85,2),且P(80X90)0.3,P(X90)1P(80X90),从该市任选一名高三学生,其成绩不低于90分的概率是0.35故选:A【点睛】本题考查正态分布曲线
4、的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题6将函数的图象向右平移个单位长度后,所得图象的一个对称中心为()ABCD【答案】A【解析】利用函数yAsin(x+)的图象变换规律,求得平移后的解析式,再令2xk,求得结论【详解】将函数ysin(2x)的图象向右平移个单位长度后,所得图象对应的函数解析式为 ysin(2x),令2xk,求得x,kZ,故函数的对称中心为(,0),kZ,故选:A【点睛】本题主要考查函数yAsin(x+)的图象变换规律,正弦函数的图象的对称性,属于基础题7已知双曲线:的一条渐近线过点,则的离心率为( )ABCD3【答案】C【解析】求得
5、双曲线的渐近线方程,由题意可得,再由离心率公式,计算可得所求值【详解】双曲线的渐近线方程为,由题意可得,可得,则双曲线的离心率为故选:C【点睛】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查方程思想和运算能力,属于基础题8执行如图所示的程序框图,当输入的为1时,则输出的结果为( )A3B4C5D6【答案】C【解析】将代入程序框图,然后根据循环条件,依次得到每一步中各参数的值,根据判断语句,当不符合循环条件时,输出的值.【详解】输入,不成立,成立,成立,成立,成立,成立,成立,成立,成立,不成立.输出.故选C项.【点睛】本题考查通过程序框图的输入值和循环结构,得到输出值,属于简
6、单题.9某简单几何体的三视图如图所示,若该几何体的所有顶点都在球的球面上,则球的体积是ABCD【答案】B【解析】由三视图还原几何体,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2,然后将其放入正方体进行求解【详解】由三视图还原原几何体如图,可知该几何体为直三棱柱,底面为等腰直角三角形,直角边长为2,侧棱长为2把该三棱锥补形为正方体,则正方体体对角线长为该三棱柱外接球的半径为体积V故选:B【点睛】本题考查空间几何体的三视图,考查多面体外接球表面积与体积的求法,是中档题10已知等差数列的前项和,等比数列的前项和,则向量的模为( )A1BCD无法确定【答案】A【解析】根据等差
7、数列的前项和及等比数列前项和的特点,分别得到和的值,然后得到的模长.【详解】等差数列前项和,即常数项为的二次式,而根据已知,故可得;等比数列的前项而根据已知,可得,即,因此向量,则故选A项.【点睛】本题考查等差数列和等比数列求和公式的性质,属于中档题.11设椭圆的两焦点分别为,以为圆心,为半径的圆与交于,两点,若为直角三角形,则的离心率为( )ABCD【答案】B【解析】由为直角三角形,得,可得,利用椭圆的定义和离心率的概念,即可求解.【详解】如图所示,因为为直角三角形,所以,所以,则,解得,故选B 【点睛】本题主要考查了椭圆的标准方程及其简单的几何性质的应用,其中解答中合理利用椭圆的定义和离心
8、率的概念求解是解答的关键,着重考查了运算与求解能力,属于基础题.12已知定义在上的函数的导函数为,且,设, ,则, 的大小关系为( )A B C D无法确定【答案】A【解析】令,则.即在上为增函数.所以,即,整理得: ,即.故选A.点睛:本题主要考查构造函数,常用的有: ,构造xf(x);2xf(x)+x2f(x),构造x2f(x);,构造;,构造;,构造.等等.二、填空题13设满足约束条件,则目标函数的最大值为_【答案】3【解析】作出约束条件所表示的平面区域,结合图象确定函数的最优解,解求解目标函数的最大值,得到答案。【详解】由题意,作出约束条件表示的平面区域,如图所示,目标函数,可化为直线
9、,当直线过点A时,直线在y轴上的截距最大,此时目标函数取得最大值,又由,解得,所以目标函数的最大值为。【点睛】本题主要考查简单线性规划求解目标函数的最值问题其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题14已知函数,若,则_【答案】【解析】根据题意,由的值分析可得,变形可得,则有则,代入计算可得答案【详解】函数,若,则,变形可得,则;故答案为:【点睛】本题考查函数值的计算,关键是求出函数的解析式,属于基础题15古代数学著作九章算术有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?
10、”意思是:“一女子善于织布,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这个女子每天分别织布多少?”根据上题的已知条件,可求得该女子第3天所织布的尺数为_【答案】【解析】试题分析:设该女子第一末织布尺,则由题意得,解之得,所以前三天织布的总尽数为,故应填.【考点】1.等比数列的定义与求和;2.数列的应用.【名师点睛】本题考查等比数列的定义与求和、数列的应用以及数学文化,属中档题;解决数列的应用问题,要明确问题属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求还求,特别是在弄清项数.16设函数,其中,若存在唯一的整数,使得,则的取值范围是_【答案】【解析】由得到,设,从而由题意可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 西藏 拉萨市 高三下 学期 第二次 模拟考试 数学 试题 解析
链接地址:https://www.77wenku.com/p-105343.html