2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)含详细解答
《2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)含详细解答》由会员分享,可在线阅读,更多相关《2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)含详细解答(19页珍藏版)》请在七七文库上搜索。
1、2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1(5分)设集合Ax|1x2,Bx|xa,若AB,则a的取值范围是()Aa|a2Ba|a2Ca|a1Da|a22(5分)若f(x)2x+3,g(x+2)f(x),则g(x)的表达式为()Ag(x)2x+1Bg(x)2x1Cg(x)2x3Dg(x)2x+73(5分)设是第三象限角,化简:()A1B0C1D24(5分)设a0.60.4,b0.40.6,c0.40.4,则a,b,c的大小关系为()AabcBbcaCcabDcba5(
2、5分)若函数f(x)满足f(x)2f(2x)x2+8x8,则f(1)的值为()A0B1C2D36(5分)已知函数g(x)与f(x)ax(a0,a1)的图象关于直线yx对称,则g(2)+g()的值为()A4B2C1D07(5分)直角坐标系内,终边过点P(sin2,cos2),则终边与重合的角可表示成()A2+2k,kZB+2+k,kZC2+2k,kzD2+2k,kZ8(5分)已知函数f(x)在定义域上单调递减,那么a的取值范围是()A(0,)B(0,)1C(0,1D0,19(5分)如图,在ABC中,已知,P为AD上一点,且满足m+,则实数m的值为()ABCD10(5分)在直角三角形ABC中,点D
3、是斜边AB的中点,点P为线段CD的中点,则()A2B4C5D1011(5分)定义在R上的偶函数f(x)满足f(x+2)f(x),当x3,2时,f(x)x2+4x+3,则yff(x)+1在区间3,3上的零点个数为()A1个B2个C4个D6个12(5分)设e为自然对数的底数,则函数f(x)ex(2ex)+(a+2)|ex1|a2存在三个零点,则a的取值范围是()A1,2B(1,2)C1,2)D(1,2二、填空题:(本大题共4小题,每小题5分,共20分把答案填在答题卡上第13,14,15小题是考察预习效果的)13(5分)函数f(x)+lg(3x+1)的定义域为 14(5分)tan &n
4、bsp; 15(5分)在ABC中,A60,a4,b4,则B等于 16(5分)已知,且,则cos(x+2y) 三、解答题:(本大题共6小题,17题10分,其余每题12分,共70分.解答应写出文字说明、证明过程或演算步骤)17(10分)(1)化简求值:(log32+1og92)(log43+1og83)+2;(2)已知xx1,求x3x3的值18(12分)已知(1,2),(3,2),当k为何值时:(1)k+与3垂直;(2)k+与3平行,平行时它们是同向还是反向?19(12分)声音通过空气的振动所产生的压强叫声压强,简称声压,单位为帕(Pa)把声压的有效值取对数来表示声音的
5、强弱,这种表示声音强弱的数值叫声压级声压级以符号SPL表示,单位为分贝(dB),公式为:SPL(声压级)(dB),式中pe为待测声压的有效值,pref为参考声压,在空气中参考声压pref一般取值2105Pa根据上述材料,回答下列问题(1)若某两人小声交谈时的声压有效值pe0.002Pa,求其声压级;(2)已知某班开主题班会,测量到教室内最高声压级达到90dB,求此时该班教室内声压的有效值20(12分)已知函数f(x)Asin(x+)(A0,0)的部分图象如图所示()求函数f(x)的解析式;()若函数f(x)在0,上取最小值时对应的角度为,求半径为2,圆心角为的扇形的面积21(12分)已知定义域
6、为R的函数f(x)+是奇函数(1)求a的值;(2)判断函数f(x)的单调性并证明;(3)若对于任意的t(1,2),不等式f(2t2+t+1)+f(t22mt)0有解,求m的取值范围22(12分)已知函数f(x)sin(xR)任取tR,若函数f(x)在区间t,t+1上的最大值为M(t),最小值为m(t),记g(t)M(t)m(t)()求函数f(x)的最小正周期及对称轴方程()当t2,0时,求函数g(t)的解析式()设函数h(x)2|xk|,H(x)x|xk|+2k8,其中实数k为参数,且满足关于t的不等式k5g(t)0有解若对任意x14,+),存在x2(,4,使得h(x2)H(x1)成立,求实数
7、k的取值范围参考公式:sincossin()2018-2019学年四川省成都七中高一(下)入学数学试卷(2月份)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1(5分)设集合Ax|1x2,Bx|xa,若AB,则a的取值范围是()Aa|a2Ba|a2Ca|a1Da|a2【分析】在数轴上画出图形,结合图形易得a2【解答】解:在数轴上画出图形易得a2故选:A【点评】本题考查集合的包含关系,解题时要作出图形,结合数轴进行求解2(5分)若f(x)2x+3,g(x+2)f(x),则g(x)的表达式为()Ag(x)2x+1Bg(x)2
8、x1Cg(x)2x3Dg(x)2x+7【分析】由g(x+2)f(x),把f(x)的表达式表示为含有x+2的基本形式即可【解答】解:f(x)2x+3,g(x+2)f(x)2x+32(x+2)1,即g(x)2x1故选:B【点评】本题考查了求简单的函数解析式的问题,是基础题3(5分)设是第三象限角,化简:()A1B0C1D2【分析】原式利用单项式乘以多项式法则计算,再利用同角三角函数间基本关系化简,结合角的范围即可得到结果【解答】解:是第三象限角,可得:cos0,cos2+cos2tan2cos2+cos2cos2+sin211故选:C【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是
9、解本题的关键,属于基础题4(5分)设a0.60.4,b0.40.6,c0.40.4,则a,b,c的大小关系为()AabcBbcaCcabDcba【分析】直接利用指数函数与幂函数的单调性进行大小比较【解答】解:a0.60.4,c0.40.4,由幂函数的性质可得ac,b0.40.6,c0.40.4,由指数函数的性质可得bc,bca故选:B【点评】本题考查指数函数与幂函数的图象与性质,是基础题5(5分)若函数f(x)满足f(x)2f(2x)x2+8x8,则f(1)的值为()A0B1C2D3【分析】在f(x)2f(2x)x2+8x8中,令x1,能求出f(1)的值【解答】解:函数f(x)满足f(x)2f
10、(2x)x2+8x8,f(1)2f(1)1+88,f(1)1故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用6(5分)已知函数g(x)与f(x)ax(a0,a1)的图象关于直线yx对称,则g(2)+g()的值为()A4B2C1D0【分析】由已知可得函数g(x)与f(x)ax(a0,a1)互为反函数,即g(x)logax(a0,a1),结合对数的运算性质,可得答案【解答】解:若函数g(x)与f(x)ax(a0,a1)的图象关于直线yx对称,故函数g(x)与f(x)ax(a0,a1)互为反函数,故g(x)logax(a0,a1),故g(2)+g()loga2
11、+loga2loga20,故选:D【点评】本题考查的知识点是反函数,函数求值,对数的运算性质,难度中档7(5分)直角坐标系内,终边过点P(sin2,cos2),则终边与重合的角可表示成()A2+2k,kZB+2+k,kZC2+2k,kzD2+2k,kZ【分析】由P(sin2,cos2),即为(cos(2),sin(2),即可求出【解答】解:终边过点P(sin2,cos2),即为(cos(2),sin(2)终边与重合的角可表示成2+2k,kZ,故选:A【点评】本题考查了终边相同的角和诱导公式,属基础题8(5分)已知函数f(x)在定义域上单调递减,那么a的取值范围是()A(0,)B(0,)1C(0
12、,1D0,1【分析】根据题意,分析函数f(x)的定义域为(0,+),再分析函数yx+和函数y3x在(0,+)上的单调性,求出两个函数的交点,据此分析可得答案【解答】解:根据题意,函数f(x)的定义域为(0,+),yx+在(0,1为减函数,则1,+)上为增函数,y3x在(0,+)上为减函数,又由函数yx+与y3x有2个交点:(,)和(1,2),若函数f(x)在定义域上单调递减,必有0a或a1,即a的取值范围为(0,1;故选:C【点评】本题考查分段函数的单调性,关键是分析分段函数解析式的形式,属于基础题9(5分)如图,在ABC中,已知,P为AD上一点,且满足m+,则实数m的值为()ABCD【分析】
13、由题设,可将用两向量表示出来,已知中已有足m+,可根据平面向量基本定理建立起m的方程,从而求出m的值【解答】解:如图,又,所以又m+,由平面向量基本定理可得,解得m故选:B【点评】本题考查平面向量基本定理的应用,根据向量的三角形法则与平行四边形法则把用两向量表示出来,是解答本题的关键10(5分)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则()A2B4C5D10【分析】以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB2r,CDB,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出
14、的值【解答】解:以D为原点,AB所在直线为x轴,建立如图坐标系,AB是RtABC的斜边,以AB为直径的圆必定经过C点设AB2r,CDB,则A(r,0),B(r,0),C(rcos,rsin)点P为线段CD的中点,P(rcos,rsin)|PA|2+r2cos,|PB|2+r2cos,可得|PA|2+|PB|2r2又点P为线段CD的中点,CDr|PC|2r2所以:10故选:D【点评】本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题11(5分)定义在R上的偶函数f(x)满足f(x+2)f(x),当x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 四川省 成都 中高 入学 数学试卷 月份 详细 解答
链接地址:https://www.77wenku.com/p-105855.html