鲁京津琼专用2020版高考数学大一轮复习第三章导数及其应用3.2导数的应用第2课时课件
《鲁京津琼专用2020版高考数学大一轮复习第三章导数及其应用3.2导数的应用第2课时课件》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第三章导数及其应用3.2导数的应用第2课时课件(58页珍藏版)》请在七七文库上搜索。
1、第2课时 导数与函数的极值、最值,第三章 3.2 导数的应用,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,题型一 用导数求解函数极值问题,命题点1 根据函数图象判断极值 例1 设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是 A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(2) D.函数f(x)有极大值f(2)和极小值f(2),多维探究,解析 由题图可知,当x0; 当22时
2、,f(x)0. 由此可以得到函数f(x)在x2处取得极大值, 在x2处取得极小值.,命题点2 求已知函数的极值 例2 (2018泉州质检)已知函数f(x)x1 (aR,e为自然对数的底数), 求函数f(x)的极值.,当a0时,f(x)0,f(x)为(,)上的增函数,所以函数f(x)无极值. 当a0时,令f(x)0,得exa,即xln a, 当x(,ln a)时,f(x)0, 所以f(x)在(,ln a)上单调递减, 在(ln a,)上单调递增,故f(x)在xln a处取得极小值且极小值为f(ln a)ln a,无极大值. 综上,当a0时,函数f(x)无极值; 当a0时,f(x)在xln a处取
3、得极小值ln a,无极大值.,命题点3 根据极值(点)求参数,所以f(x)x2ax1.,函数极值的两类热点问题 (1)求函数f(x)极值的一般解题步骤 确定函数的定义域;求导数f(x);解方程f(x)0,求出函数定义域内的所有根;列表检验f(x)在f(x)0的根x0左右两侧值的符号. (2)根据函数极值情况求参数的两个要领 列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. 验证:求解后验证根的合理性.,跟踪训练1 设函数f(x)ax32x2xc. (1)当a1,且函数f(x)的图象过点(0,1)时,求函数f(x)的极小值;,解 f(x)3ax24x1. 函数f(x)的图
4、象过点(0,1)时,有f(0)c1. 当a1时,f(x)x32x2x1,f(x)3x24x1,,所以函数f(x)的极小值是f(1)13212111.,(2)若f(x)在(,)上无极值点,求a的取值范围.,解 若f(x)在(,)上无极值点, 则f(x)在(,)上是单调函数, 即f(x)3ax24x10或f(x)3ax24x10恒成立. 当a0时,f(x)4x1,显然不满足条件; 当a0时,f(x)0或f(x)0恒成立的充要条件是(4)243a10,,题型二 用导数求函数的最值,师生共研,(1)求f(x)的单调区间;,f(x)的定义域为(0,).,由f(x)0,得01,,(1)若函数在区间a,b上
5、单调递增或递减,f(a)与f(b)一个为最大值,一个为最小值; (2)若函数在闭区间a,b内有极值,要先求出a,b上的极值,与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成; (3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.,跟踪训练2 (2017北京)已知函数f(x)excos xx. (1)求曲线yf(x)在点(0,f(0)处的切线方程;,解 因为f(x)excos xx, 所以f(x)ex(cos xsin x)1,f(0)0. 又因为f(0)1,所以曲线yf(x)在点(0,f(0)处的切线方程
6、为y1.,解 设h(x)ex(cos xsin x)1, 则h(x)ex(cos xsin xsin xcos x)2exsin x.,即f(x)0,,题型三 函数极值、最值的综合问题,例5 (2018珠海调研)已知函数f(x) (a0)的导函数yf(x)的两个零点为3和0. (1)求f(x)的单调区间;,师生共研,令g(x)ax2(2ab)xbc, 因为ex0,所以yf(x)的零点就是g(x)ax2(2ab)xbc的零点且f(x)与g(x)符号相同. 又因为a0,所以当30,即f(x)0, 当x0时,g(x)0,即f(x)0, 所以f(x)的单调递增区间是(3,0), 单调递减区间是(,3)
7、,(0,).,(2)若f(x)的极小值为e3,求f(x)在区间5,)上的最大值.,解 由(1)知,x3是f(x)的极小值点,,解得a1,b5,c5,,因为f(x)的单调递增区间是(3,0), 单调递减区间是(,3),(0,), 所以f(0)5为函数f(x)的极大值, 故f(x)在区间5,)上的最大值取f(5)和f(0)中的最大者,,所以函数f(x)在区间5,)上的最大值是5e5.,(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小. (2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函
8、数的最值.,跟踪训练3 已知函数f(x)ax32x24x5,当x 时,函数f(x)有极值,则函数f(x)在3,1上的最大值为_.,13,解析 f(x)3ax24x4,,f(x)x32x24x5, f(x)3x24x4.,当x变化时,f(x),f(x)的取值及变化情况如表所示:,函数f(x)在3,1上的最大值为13.,例 (12分)已知函数f(x)ln xax(aR). (1)求函数f(x)的单调区间; (2)当a0时,求函数f(x)在1,2上的最小值.,答题模板,DATIMUBAN,利用导数求函数的最值,综上可知,当a0时,函数f(x)的单调递增区间为(0,);,所以f(x)的最小值是f(1)
9、a. 7分,又f(2)f(1)ln 2a,,当ln 2a1时,最小值为f(2)ln 22a. 11分 综上可知,当0aln 2时,函数f(x)的最小值是f(1)a; 当aln 2时,函数f(x)的最小值是f(2)ln 22a. 12分,答题模板 用导数法求给定区间上的函数的最值问题的一般步骤 第一步:(求导数)求函数f(x)的导数f(x); 第二步:(求极值)求f(x)在给定区间上的单调性和极值; 第三步:(求端点值)求f(x)在给定区间上的端点值; 第四步:(求最值)将f(x)的各极值与f(x)的端点值进比较,确定f(x)的最大值与最小值; 第五步:(反思)反思回顾,查看关键点,易错点和解题
10、规范.,课时作业,2,PART TWO,1.函数f(x)的定义域为R,导函数f(x)的图象如图所示,则函数f(x) A.无极大值点、有四个极小值点 B.有三个极大值点、一个极小值点 C.有两个极大值点、两个极小值点 D.有四个极大值点、无极小值点,解析 设f(x)的图象与x轴的4个交点的横坐标从左至右依次为x1,x2,x3,x4. 当x0,f(x)为增函数,当x1xx2时,f(x)0,f(x)为减函数,则xx1为极大值点, 同理,xx3为极大值点,xx2,xx4为极小值点,故选C.,基础保分练,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 f(x)x24(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第三 导数 及其 应用
链接地址:https://www.77wenku.com/p-107049.html