鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第2课时定点与定值问题课件
《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第2课时定点与定值问题课件》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第2课时定点与定值问题课件(64页珍藏版)》请在七七文库上搜索。
1、第2课时 定点与定值问题,第九章 高考专题突破五 高考中的圆锥曲线问题,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,题型一 定点问题,师生共研,解 设椭圆的焦距为2c,由题意知b1, 且(2a)2(2b)22(2c)2,又a2b2c2,a23.,(2)若123,试证明:直线l过定点,并求此定点.,解 由题意设P(0,m),Q(x0,0),M(x1,y1), N(x2,y2),设l方程为xt(ym),,123,y1y2m(y1y2)0, ,由题意知4m2t44(t23)(t2m23)0, ,代入得t2m232m2t20, (mt)
2、21, 由题意mt0,mt1,满足, 得直线l的方程为xty1,过定点(1,0),即Q为定点.,圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点. (2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.,解 圆x2y24与x轴交于点(2,0), 即为椭圆的焦点,圆x2y24与y轴交于点(0,2), 即为椭圆的上下两顶点,所以c2,b2.,(2)证明:直线MN过定点.,证明 设直线MN的方程为ykxm.,设M(x1,y1),N(x2,y2),,由MAN的平分线在y轴上,得k1k20.
3、又因为|AM|AN|,所以k0,所以m1. 因此,直线MN过定点(0,1).,题型二 定值问题,师生共研,例2 (2018北京)已知抛物线C:y22px经过点P(1,2),过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N. (1)求直线l的斜率的取值范围;,解 因为抛物线y22px过点(1,2), 所以2p4,即p2. 故抛物线C的方程为y24x. 由题意知,直线l的斜率存在且不为0. 设直线l的方程为ykx1(k0),,依题意知(2k4)24k210, 解得k0或0k1.,又PA,PB与y轴相交,故直线l不过点(1,2). 从而k3. 所以直
4、线l的斜率的取值范围是(,3)(3,0)(0,1).,证明 设A(x1,y1),B(x2,y2),,圆锥曲线中的定值问题的常见类型及解题策略 (1)求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值. (2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得. (3)求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.,由余弦定理,得|F1F2|2|MF1|2|MF2|22|MF1|MF2|cos 60 (|MF1|MF2|)22|MF1|MF2|(1cos 60),,由|F1F2|
5、4得c2,从而b2,,(2)设N(0,2),过点P(1,2)作直线l,交椭圆C于异于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1k2为定值.,证明 当直线l的斜率存在时, 设斜率为k,显然k0,则其方程为y2k(x1),,56k232k0, 设A(x1,y1),B(x2,y2),,当直线l的斜率不存在时,,得k1k24. 综上,k1k2为定值.,数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程.主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等.,核心素养之数学运算,HEXINSUYANGZHISHUXUEYUN
6、SUAN,直线与圆锥曲线的综合问题,(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;,解 设P(x0,y0)(y00),,所以直线PF1,PF2的方程分别为,(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k20,证明 为定值,并求出这个定值.,解 设P(x0,y0)(y00), 则直线l的方程为yy0k(xx0).,素养提升 典例的解题过程体现了数学运算素养,其中设出P点的坐标而不求解又体现了数学运算素养中的一个运算技巧设而不求
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何 专题 突破 中的 圆锥曲线 问题 课时 定点 课件
链接地址:https://www.77wenku.com/p-107059.html