鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件
《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件(64页珍藏版)》请在七七文库上搜索。
1、第1课时 范围、最值问题,第九章 高考专题突破五 高考中的圆锥曲线问题,NEIRONGSUOYIN,内容索引,题型分类 深度剖析,课时作业,题型分类 深度剖析,1,PART ONE,题型一 范围问题,师生共研,(1)求椭圆C的标准方程;,又直线xy20经过椭圆的右顶点,,(2)设不过原点O的直线与椭圆C交于M,N两点,且直线OM,MN,ON的斜率依次成等比数列,求OMN面积的取值范围.,解 由题意可设直线的方程为ykxm(k0,m0),,消去y,并整理得(14k2)x28kmx4(m21)0,,于是y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2. 又直线OM,MN,ON的斜率
2、依次成等比数列,,又由64k2m216(14k2)(m21) 16(4k2m21)0,得0m22, 显然m21(否则x1x20,x1,x2中至少有一个为0,直线OM,ON中至少有一个斜率不存在,与已知矛盾). 设原点O到直线的距离为d,,故由m的取值范围可得OMN面积的取值范围为(0,1).,解决圆锥曲线中的取值范围问题应考虑的五个方面 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等
3、式,从而求出参数的取值范围. (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.,所以y1y22y0,所以PM垂直于y轴.,跟踪训练1 (2018浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y24x上存在不同的两点A,B满足PA,PB的中点均在C上. (1)设AB中点为M,证明:PM垂直于y轴;,因为PA,PB的中点在抛物线上,,(2)若P是半椭圆x2 1(x0)上的动点,求PAB面积的取值范围.,题型二 最值问题,多维探究,命题点1 利用三角函数有界性求最值 例2 过抛物线y24x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|
4、AF|BF|的最小值是,解析 设直线AB的倾斜角为,,命题点2 数形结合利用几何性质求最值 例3 在平面直角坐标系xOy中,P为双曲线x2y21右支上的一个动点.若 点P到直线xy10的距离大于c恒成立,则实数c的最大值为_.,解析 双曲线x2y21的渐近线为xy0, 直线xy10与渐近线xy0平行,,命题点3 转化为函数利用基本不等式或二次函数求最值,例4 已知点P是圆O:x2y21上任意一点,过点P作PQy轴于点Q,延长QP到点M,使 . (1)求点M的轨迹E的方程;,(2)过点C(m,0)作圆O的切线l,交(1)中的曲线E于A,B两点,求AOB面积的最大值.,解 由题意可知直线l与y轴不
5、垂直, 故可设l:xtym,tR,A(x1,y1),B(x2,y2), l与圆O:x2y21相切,,其中4m2t24(t24)(m24)480,,AOB面积的最大值为1.,处理圆锥曲线最值问题的求解方法 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.,(1)求实数m的取值范围;,(2)求AOB面积的最大值(O为坐标原点).,课时作业,2,PART TWO,基础保分练
6、,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,2.定长为4的线段MN的两端点在抛物线y2x上移动,设点P为线段MN的中点,则点P到y轴距离的最小值为 A.1 B. C.2 D.5,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(两边之和大于第三边且M,N,F三点共线时取等号).,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,
7、6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,解析 由于以O为圆心,以b为半径的圆内切于椭圆, 所以要使以O为圆心,以c为半径的圆与椭圆恒有公共点,需满足cb, 则c2b2a2c2,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,5.(2018云南昆明一中摸底)设O为坐标原点,P是以F为焦点的抛物线y22px(p0)上任意一点,M是线段PF上的点,且|PM|2|MF|,则直线OM的斜率的最大值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何 专题 突破 中的 圆锥曲线 问题 课时 范围 课件
链接地址:https://www.77wenku.com/p-107065.html