鲁京津琼专用2020版高考数学大一轮复习第二章函数概念与基本初等函数Ⅰ2.8函数与方程课件
《鲁京津琼专用2020版高考数学大一轮复习第二章函数概念与基本初等函数Ⅰ2.8函数与方程课件》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第二章函数概念与基本初等函数Ⅰ2.8函数与方程课件(59页珍藏版)》请在七七文库上搜索。
1、2.8 函数与方程,ZUIXINKAOGANG,最新考纲,1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系. 2.根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.函数的零点 (1)函数零点的定义 对于函数yf(x)(xD),把使 的实数x叫做函数yf(x)(xD)的零点. (2)三个等价关系 方程f(x)0有实数根函数yf(x)的图象与 有交点函数yf(x)有 .
2、 (3)函数零点的判定(零点存在性定理) 如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有_ ,那么,函数yf(x)在区间 内有零点,即存在c(a,b),使得 ,这个 也就是方程f(x)0的根.,f(x)0,x轴,零点,f(a),知识梳理,ZHISHISHULI,f(b)0,(a,b),f(c)0,c,2.二次函数yax2bxc (a0)的图象与零点的关系,(x1,0),(x2,0),(x1,0),2,1,0,函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点?,提示 不能.,【概念方法微思考】,题组一 思考辨析,1.判断下列结论是否正确(请在括号中打“”或“”)
3、 (1)函数的零点就是函数的图象与x轴的交点.( ) (2)函数yf(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)f(b)0.( ) (3)二次函数yax2bxc(a0)在b24ac0时没有零点.( ) (4)f(x)x2,g(x)2x,h(x)log2x,当x(4,)时,恒有h(x)f(x)g(x).( ),基础自测,JICHUZICE,1,2,3,4,5,6,题组二 教材改编,且函数f(x)的图象在(0,)上连续不断,f(x)为增函数, f(x)的零点在区间(2,3)内.,1,2,3,4,5,6,3.函数f(x)ex3x的零点个数是 A.0 B.1 C.2 D.3,解析 由
4、f(x)ex30,得f(x)在R上单调递增,,1,2,3,4,5,6,因此函数f(x)有且只有一个零点.,题组三 易错自纠,4.函数f(x)ln2x3ln x2的零点是 A.(e,0)或(e2,0) B.(1,0)或(e2,0) C.(e2,0) D.e或e2,解析 f(x)ln2x3ln x2(ln x1)(ln x2), 由f(x)0得xe或xe2.,1,2,3,4,5,6,1,2,3,4,5,6,5.若二次函数f(x)x22xm在区间(0,4)上存在零点,则实数m的取值范围是 .,(8,1,解析 mx22x在(0,4)上有解, 又x22x(x1)21, yx22x在(0,4)上的值域为(
5、8,1, 8m1.,1,2,3,4,5,6,6.已知函数f(x)x (x0),g(x)xex,h(x)xln x(x0)的零点分别为x1,x2,x3,则 A.x1x2x3 B.x2x1x3 C.x2x3x1 D.x3x1x2,如图所示,可知选C.,2,题型分类 深度剖析,PART TWO,题型一 函数零点所在区间的判定,1.设f(x)ln xx2,则函数f(x)的零点所在的区间为 A.(0,1) B.(1,2) C.(2,3) D.(3,4),自主演练,解析 f(1)ln 11210, f(1)f(2)0, 函数f(x)ln xx2的图象在(0,)上是连续的,且为增函数, f(x)的零点所在的
6、区间是(1,2).,2.若abc,则函数f(x)(xa)(xb)(xb)(xc)(xc)(xa)的两个零点分别位于区间 A.(a,b)和(b,c)内 B.(,a)和(a,b)内 C.(b,c)和(c,)内 D.(,a)和(c,)内,解析 a0, f(b)(bc)(ba)0, 由函数零点存在性定理可知,在区间(a,b),(b,c)内分别存在零点,又函数f(x)是二次函数,最多有两个零点.因此函数f(x)的两个零点分别位于区间(a,b),(b,c)内,故选A.,3.已知函数f(x)logaxxb(a0且a1).当2a3b4时,函数f(x)的零点x0(n,n1),nN*,则n .,解析 对于函数yl
7、ogax, 当x2时,可得y1, 在同一坐标系中画出函数ylogax,yxb的图象, 判断两个函数图象的交点的横坐标在(2,3)内, 函数f(x)的零点x0(n,n1)时,n2.,2,判断函数零点所在区间的基本依据是零点存在性定理.对于含有参数的函数的零点区间问题,往往要结合图象进行分析,一般是转化为两函数图象的交点,分析其横坐标的情况进行求解.,所以在(,0上,f(x)有一个零点;,所以f(x)在(0,)上是增函数. 又因为f(2)2ln 20,所以f(x)在(0,)上有一个零点, 综上,函数f(x)的零点个数为2.,题型二 函数零点个数的判断,师生共研,2,(2)(2018天津河东区模拟)
8、函数f(x)|x2|ln x在定义域内的零点的个数为 A.0 B.1 C.2 D.3,解析 由题意可知f(x)的定义域为(0,),在同一直角坐标系中画出函数y|x2|(x0),yln x(x0)的图象,如图所示. 由图可知函数f(x)在定义域内的零点个数为2.,(3)函数f(x) cos x在0,)内 A.没有零点 B.有且仅有一个零点 C.有且仅有两个零点 D.有无穷多个零点,所以f(x)0,故f(x)在0,1上单调递增,且f(0)10, 所以f(x)在0,1内有唯一零点.,故函数f(x)在0,)上有且仅有一个零点,故选B.,函数零点个数的判断方法 (1)直接求零点. (2)利用零点存在性定
9、理再结合函数的单调性确定零点个数. (3)利用函数图象的交点个数判断.,跟踪训练1 (1)已知函数f(x) 则函数g(x)f(1x)1的零点 个数为 A.1 B.2 C.3 D.4,易知当x1时,函数g(x)有1个零点; 当x1时,函数g(x)有2个零点,所以函数g(x)的零点共有3个,故选C.,2,解析 f(x)2(1cos x)sin x2sin x|ln(x1)|sin 2x|ln(x1)|,x1, 函数f(x)的零点个数即为函数y1sin 2x(x1)与y2|ln(x1)|(x1)的图象的交点个数. 分别作出两个函数的图象,如图,可知有两个交点,则f(x)有两个零点.,题型三 函数零点
10、的应用,命题点1 根据函数零点个数求参数,多维探究,(0,1),(2)已知函数f(x)|x23x|,xR,若方程f(x)a|x1|0恰有4个互异的实数根,则实数a的取值范围是_.,(0,1)(9,),解析 由题意知a0. 在同一直角坐标系中作出y|x23x|,ya|x1|的图象如图所示. 由图可知f(x)a|x1|0有4个互异的实数根等价于y|x23x|与ya|x1|的图象有4个不同的交点且4个交点的横坐标都小于1,,消去y得x2(3a)xa0有两个不等实根, 所以(3a)24a0,即a210a90, 解得a9. 又a0,09.,本例(2)中,若f(x)a恰有四个互异的实数根,则a的取值范围是
11、_.,解析 作出y|x23x|,ya的图象如图所示.,命题点2 根据函数零点的范围求参数 例3 若函数f(x)(m2)x2mx2m1的两个零点分别在区间(1,0)和区 间(1,2)内,则m的取值范围是 .,根据函数零点的情况求参数有三种常用方法 (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围. (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决. (3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.,跟踪训练2 (1)方程 (a2x)2x有解,则a的最小值为 .,1,解析 若方程 (a2x)2x有解,,故a的最小值
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第二 函数 概念 基本 初等
链接地址:https://www.77wenku.com/p-107068.html