鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量微专题九立体几何中的动态问题课件
《鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量微专题九立体几何中的动态问题课件》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量微专题九立体几何中的动态问题课件(24页珍藏版)》请在七七文库上搜索。
1、微专题九 立体几何中的动态问题,第八章 立体几何与空间向量,解题策略 立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转.就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离.立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现.在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜.,1.去掉枝蔓见本质大道至简 在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决
2、“动态”问题的关键.,例1 如图1,直线l平面,垂足为O.正方体ABCDA1B1C1D1的棱长为2.点A是直线l上的动点,点B1在平面内,则点O到线段CD1中点P的距离的最大值为_.,图1,解析 从图形分化出4个点O,A,B1,P,其中AOB1为直角三角形,固定AOB1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,,当且仅当OQAB1,且点O,Q,P共线时取到等号,此时直线AB1与平面成45角.,2.极端位置巧分析穷妙极巧 在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案.,例2 在正四面体ABCD中,E为棱BC的中点,
3、F为直线BD上的动点,则平 面AEF与平面ACD所成二面角的正弦值的取值范围是_.,解析 本例可用极端位置法来加以分析. 先寻找垂直:记O为ACD的中心,G为OC的中点,则BO面ACD,EG面ACD.如图2,过点A,E,G的平面交直线BD于点F.此时,平面AEF与平面ACD所面二面角的正弦值为1. 由图形变化的连续性知,当点F在直线BD的无穷远处时,看成EF和BD平行,此时平面AEF与平面ACD所成二面角最小(如图3),其正弦值为 .,图2,图3,3.用法向量定平面定海神针 在解决立体几何中的“动态”问题时,有关角度计算问题,用法向量定平面,可将线面角或面面角转化为线线角.,图4,又因为l与直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第八 立体几何 空间 向量 专题 中的 动态 问题 课件
链接地址:https://www.77wenku.com/p-107087.html