鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.2平面向量基本定理及坐标表示课件
《鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.2平面向量基本定理及坐标表示课件》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.2平面向量基本定理及坐标表示课件(62页珍藏版)》请在七七文库上搜索。
1、5.2 平面向量基本定理及坐标表示,第五章 平面向量与复数,ZUIXINKAOGANG,最新考纲,1.了解平面向量基本定理及其意义. 2.掌握平面向量的正交分解及其坐标表示. 3.会用坐标表示平面向量的加、减与数乘运算. 4.理解用坐标表示的平面向量共线的条件,NEIRONGSUOYIN,内容索引,基础知识 自主学习,题型分类 深度剖析,课时作业,1,基础知识 自主学习,PART ONE,1.平面向量基本定理 如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的任意向量a, 一对实数1,2,使a . 其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组 .,不共线,有且只有,基
2、底,知识梳理,ZHISHISHULI,1e12e2,2.平面向量的坐标运算 (1)向量加法、减法、数乘及向量的模 设a(x1,y1),b(x2,y2),则 ab ,ab , a ,|a| . (2)向量坐标的求法 若向量的起点是坐标原点,则终点坐标即为向量的坐标. 设A(x1,y1),B(x2,y2),则 , . 3.平面向量共线的坐标表示 设a(x1,y1),b(x2,y2),其中b0.a,b共线 .,(x1x2,y1y2),(x1x2,y1y2),(x1,y1),(x2x1,y2y1),x1y2x2y10,1.若两个向量存在夹角,则向量的夹角与直线的夹角一样吗?为什么?,提示 不一样.因为
3、向量有方向,而直线不考虑方向.当向量的夹角为直角或锐角时,与直线的夹角相同.当向量的夹角为钝角或平角时,与直线的夹角不一样.,2.平面内的任一向量可以用任意两个非零向量表示吗?,提示 不一定.当两个向量共线时,这两个向量就不能表示,即两向量只有不共线时,才能作为一组基底表示平面内的任一向量.,【概念方法微思考】,题组一 思考辨析,1.判断下列结论是否正确(请在括号中打“”或“”) (1)平面内的任意两个向量都可以作为一组基底.( ) (2)若a,b不共线,且1a1b2a2b,则12,12.( ) (3)在等边三角形ABC中,向量 的夹角为60.( ) (4)若a(x1,y1),b(x2,y2)
4、,则ab的充要条件可表示成 ( ) (5)平面向量不论经过怎样的平移变换之后其坐标不变.( ) (6)当向量的起点在坐标原点时,向量的坐标就是向量终点的坐标.( ),基础自测,JICHUZICE,1,2,3,4,5,6,2.已知ABCD的顶点A(1,2),B(3,1),C(5,6),则顶点D的坐标为_.,题组二 教材改编,1,2,3,4,5,6,(1,5),3.已知向量a(2,3),b(1,2),若manb与a2b共线,则 _.,解析 由向量a(2,3),b(1,2), 得manb(2mn,3m2n),a2b(4,1). 由manb与a2b共线,,1,2,3,4,5,6,题组三 易错自纠,4.
5、设e1,e2是平面内一组基底,若1e12e20,则12_.,1,2,3,4,5,6,0,(7,4),1,2,3,4,5,6,6.已知向量a(m,4),b(3,2),且ab,则m_.,6,解析 因为ab, 所以(2)m430,解得m6.,1,2,3,4,5,6,2,题型分类 深度剖析,PART TWO,题型一 平面向量基本定理的应用,师生共研,解 由题意知,A是BC的中点,,应用平面向量基本定理的注意事项 (1)选定基底后,通过向量的加、减、数乘以及向量平行的充要条件,把相关向量用这一组基底表示出来. (2)强调几何性质在向量运算中的作用,用基底表示未知向量,常借助图形的几何性质,如平行、相似等
6、. (3)强化共线向量定理的应用.,即P为AB的一个三等分点,如图所示. A,M,Q三点共线,,例2 (1)已知点M(5,6)和向量a(1,2),若 3a,则点N的坐标为 A.(2,0) B.(3,6) C.(6,2) D.(2,0),题型二 平面向量的坐标运算,解析 设N(x,y),则(x5,y6)(3,6), x2,y0.,师生共研,2,解析 由已知得a(5,5),b(6,3),c(1,8). mbnc(6mn,3m8n),,mn2.,平面向量坐标运算的技巧 (1)利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标. (2)解题过程中,常利用“向量相等
7、,则坐标相同”这一结论,由此可列方程(组)进行求解.,2或6,综上可知,xy2或6.,题型三 向量共线的坐标表示,命题点1 利用向量共线求向量或点的坐标,例3 已知O为坐标原点,点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为_.,多维探究,(3,3),解析 方法一 由O,P,B三点共线,,所以点P的坐标为(3,3).,即xy.,所以(x4)6y(2)0,解得xy3, 所以点P的坐标为(3,3).,命题点2 利用向量共线求参数,例4 (2018洛阳模拟)已知平面向量a(2,1),b(1,1),c(5,1),若(akb)c,则实数k的值为,解析 因为a(2,1),b(1,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第五 平面 向量 复数
链接地址:https://www.77wenku.com/p-107189.html