浙江专用2020版高考数学大一轮复习第八章立体几何与空间向量第4讲直线平面平行的判定及其性质练习含解析
《浙江专用2020版高考数学大一轮复习第八章立体几何与空间向量第4讲直线平面平行的判定及其性质练习含解析》由会员分享,可在线阅读,更多相关《浙江专用2020版高考数学大一轮复习第八章立体几何与空间向量第4讲直线平面平行的判定及其性质练习含解析(10页珍藏版)》请在七七文库上搜索。
1、第4讲 直线、平面平行的判定及其性质基础达标1在空间内,下列命题正确的是()A平行直线的平行投影重合B平行于同一直线的两个平面平行C垂直于同一平面的两个平面平行D垂直于同一平面的两条直线平行解析:选D.对于A,平行直线的平行投影也可能互相平行,或为两个点,故A错误;对于B,平行于同一直线的两个平面也可能相交,故B错误;对于C,垂直于同一平面的两个平面也可能相交,故C错误;而D为直线和平面垂直的性质定理,正确2设,是两个不同的平面,m是直线且m,“m”是“”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件解析:选B.当m时,过m的平面与可能平行也可能相交,因而mD/
2、;当时,内任一直线与平行,因为m,所以m.综上知,“m”是“”的必要而不充分条件3(2019杭州中学高三期中)已知m,n是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A若,则B若mn,m,n,则C若mn,m,n,则D若mn,m,则n解析:选C.对于A,若,则与平行或相交;对于B,若mn,m,n,则与平行或相交;对于D,若mn,m,则n或n在平面内4.如图所示,在空间四边形ABCD中,E,F分别为边AB,AD上的点,且AEEBAFFD14,又H,G分别为BC,CD的中点,则()ABD平面EFGH,且四边形EFGH是矩形BEF平面BCD,且四边形EFGH是梯形CHG平面ABD,且四边
3、形EFGH是菱形DEH平面ADC,且四边形EFGH是平行四边形解析:选B.由AEEBAFFD14知EF綊BD,所以EF平面BCD.又H,G分别为BC,CD的中点,所以HG綊BD,所以EFHG且EFHG.所以四边形EFGH是梯形5如图,若是长方体ABCDA1B1C1D1被平面EFGH截去几何体EB1FHC1G后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EHA1D1,则下列结论不正确的是()AEHFGB四边形EFGH是矩形C是棱柱D是棱台解析:选D.因为EHA1D1,A1D1B1C1,所以EHB1C1,所以EH平面BCGF,又因为FG平面BCGF,所以EHF
4、G,故A正确;因为B1C1平面A1B1BA,EF平面A1B1BA,所以B1C1EF,则EHEF,又由上面的分析知,EFGH为平行四边形,故它是矩形,故B正确;因为EHB1C1FG,故是棱柱,故C正确6(2019杭州二中期中考试)如图,在多面体ABCDEFG中,平面ABC平面DEFG,EFDG,且ABDE,DG2EF,则()ABF平面ACGDBCF平面ABEDCBCFGD平面ABED平面CGF解析:选A.取DG的中点为M,连接AM,FM,如图所示则由已知条件易证四边形DEFM是平行四边形,所以DE綊FM,因为平面ABC平面DEFG,平面ABC平面ADEBAB,平面DEFG平面ADEBDE,所以A
5、BDE,所以ABFM.又ABDE,所以ABFM,所以四边形ABFM是平行四边形,即BFAM.又BF平面ACGD,所以BF平面ACGD.故选A.7.如图,在空间四边形ABCD中,MAB,NAD,若,则直线MN与平面BDC的位置关系是_解析:在平面ABD中,所以MNBD.又MN平面BCD,BD平面BCD,所以MN平面BCD.答案:平行8.如图,正方体ABCDA1B1C1D1中,AB2,点E为AD的中点,点F在CD上若EF平面AB1C,则线段EF的长度等于_解析:因为EF平面AB1C,EF平面ABCD,平面ABCD平面AB1CAC,所以EFAC,所以F为DC的中点故EFAC.答案:9(2019宁波效
6、实中学模拟)如图,在正四棱柱ABCDA1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件_时,就有MN平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FHDD1,HNBD,所以平面FHN平面B1BDD1,只要MFH,则MN平面FHN,所以MN平面B1BDD1.答案:M位于线段FH上(答案不唯一)10在棱长为2的正方体ABCDA1B1C1D1中,P是A1B1的中点,过点A1作与截面PBC1平行的截面,所得截面的面积是_解析:如图,取AB,C1D
7、1的中点E,F,连接A1E,A1F,EF,则平面A1EF平面BPC1.在A1EF中,A1FA1E,EF2,SA1EF2,从而所得截面面积为2SA1EF2.答案:211如图,已知ABCDA1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AEFC1B1G1,H是B1C1的中点(1)求证:E,B,F,D1四点共面;(2)求证:平面A1GH平面BED1F.证明:(1)因为AEB1G1,所以BGA1E2,因为BGA1E,所以A1GBE.又因为C1F綊B1G,所以FGC1B1D1A1,所以四边形A1GFD1是平行四边形所以A1GD1F,所以D1FEB,故E、B、F、D1四
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用 2020 高考 数学 一轮 复习 第八 立体几何 空间 向量 直线 平面 平行 判定 及其 性质 练习 解析
链接地址:https://www.77wenku.com/p-107290.html