浙江专用2020版高考数学大一轮复习第八章立体几何与空间向量第1讲空间几何体的结构特征及三视图和直观图练习含解析
《浙江专用2020版高考数学大一轮复习第八章立体几何与空间向量第1讲空间几何体的结构特征及三视图和直观图练习含解析》由会员分享,可在线阅读,更多相关《浙江专用2020版高考数学大一轮复习第八章立体几何与空间向量第1讲空间几何体的结构特征及三视图和直观图练习含解析(8页珍藏版)》请在七七文库上搜索。
1、第1讲 空间几何体的结构特征及三视图和直观图基础达标1下列说法正确的有()两个面平行且相似,其余各面都是梯形的多面体是棱台;经过球面上不同的两点只能作一个大圆;各侧面都是正方形的四棱柱一定是正方体;圆锥的轴截面是等腰三角形A1个B2个C3个D4个解析:选A.中若两个底面平行且相似,其余各面都是梯形,并不能保证侧棱会交于一点,所以不正确;中若球面上不同的两点恰为球的某条直径的两个端点,则过此两点的大圆有无数个,所以不正确;中底面不一定是正方形,所以不正确;很明显是正确的2如图所示是水平放置的三角形的直观图,点D是ABC的BC边的中点,AB,BC分别与y轴、x轴平行,则在原图中三条线段AB,AD,
2、AC中()A最长的是AB,最短的是ACB最长的是AC,最短的是ABC最长的是AB,最短的是ADD最长的是AC,最短的是AD解析:选B.由条件知,原平面图形中ABBC,从而ABADAC.3如图所示,上面的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是()ABCD解析:选D.圆锥的轴截面为等腰三角形,此时符合条件;当截面不过旋转轴时,圆锥的轴截面为双曲线的一支,此时符合条件;故截面图形可能是.4(2019杭州学军中学高三期中)一个三棱锥的正视图和俯视图如图所示,则该三棱锥的侧视图可能为()解析:选D.分析三视图可知,该
3、几何体为如图所示的三棱锥,其中平面ACD平面BCD,故选D.5(2019宁波十校联考) 某几何体的正视图与俯视图如图所示,若俯视图中的多边形为正六边形,则该几何体的侧视图的面积为()AB6C3D4解析:选A.侧视图由一个矩形和一个等腰三角形构成,矩形的长为3,宽为2,面积为326.等腰三角形的底边为,高为,其面积为,所以侧视图的面积为6.6(2019丽水模拟)一锥体的三视图如图所示,则该棱锥的最长棱的棱长为()ABCD解析:选C.依题意,题中的几何体是四棱锥EABB1A1,如图所示(其中ABCDA1B1C1D1是棱长为4的正方体,C1E1),EA,EA1,EB5,EB1,ABBB1B1A1A1
4、A4,因此该几何体的最长棱的棱长为,选C.7有一个长为5 cm,宽为4 cm的矩形,则其直观图的面积为_解析:由于该矩形的面积S5420(cm2),所以其直观图的面积SS5(cm2)答案:5 cm28如图所示的RtABC绕着它的斜边AB旋转一周得到的图形是_解析:过RtABC的顶点C作线段CDAB,垂足为D,所以RtABC绕着它的斜边AB旋转一周后应得到是以CD作为底面圆的半径的两个圆锥的组合体答案:两个圆锥的组合体9如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是_解析:由三视图知,该几何体是如图所示的四棱锥PABCD,易知四棱锥PABCD的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用 2020 高考 数学 一轮 复习 第八 立体几何 空间 向量 几何体 结构 特征 视图 直观图 练习 解析
链接地址:https://www.77wenku.com/p-107291.html