浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第6讲 双曲线练习(含解析)
《浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第6讲 双曲线练习(含解析)》由会员分享,可在线阅读,更多相关《浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第6讲 双曲线练习(含解析)(8页珍藏版)》请在七七文库上搜索。
1、第6讲 双曲线基础达标1若双曲线1(a0,b0)的离心率为,则其渐近线方程为()Ay2xByxCyxDyx解析:选B.由条件e,即,得13,所以,所以双曲线的渐近线方程为yx.故选B.2已知双曲线1(a0,b0)的一条渐近线为ykx(k0),离心率ek,则双曲线方程为()A1B1C1D1解析:选C.由已知得,所以a24b2.3(2019杭州学军中学高三质检)双曲线M:x21的左、右焦点分别为F1、F2,记|F1F2|2c,以坐标原点O为圆心,c为半径的圆与曲线M在第一象限的交点为P,若|PF1|c2,则点P的横坐标为()ABCD解析:选A.由点P在双曲线的第一象限可得|PF1|PF2|2,则|
2、PF2|PF1|2c,又|OP|c,F1PF290,由勾股定理可得(c2)2c2(2c)2,解得c1.易知POF2为等边三角形,则xP,选项A正确4(2019杭州中学高三月考)已知F1、F2分别是双曲线C:1(a0,b0)的左、右焦点,若F2关于渐近线的对称点恰落在以F1为圆心,OF1为半径的圆上,则双曲线C的离心率为()AB3CD2解析:选D.由题意,F1(c,0),F2(c,0),一条渐近线方程为yx,则F2到渐近线的距离为b.设F2关于渐近线的对称点为M,F2M与渐近线交于A,所以|MF2|2b,A为F2M的中点,又O是F1F2的中点,所以OAF1M,所以F1MF2为直角,所以MF1F2
3、为直角三角形,所以由勾股定理得4c2c24b2,所以3c24(c2a2),所以c24a2,所以c2a,所以e2.故选D.5(2017高考全国卷)已知F是双曲线C:x21的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则APF的面积为()解析:选D.法一:由题可知,双曲线的右焦点为F(2,0),当x2时,代入双曲线C的方程,得41,解得y3,不妨取点P(2,3),因为点A(1,3),所以APx轴,又PFx轴,所以APPF,所以SAPF|PF|AP|31.故选D.法二:由题可知,双曲线的右焦点为F(2,0),当x2时,代入双曲线C的方程,得41,解得y3,不妨取点P(2,3),因
4、为点A(1,3),所以(1,0),(0,3),所以0,所以APPF,所以SAPF|PF|AP|31.故选D.6(2019浙江高中学科基础测试)已知双曲线1(a0,b0)与抛物线y220x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|17,则双曲线的离心率为()ABCD解析:选B.由题意知F(5,0),不妨设P点在x轴的上方,由|PF|17知点P的横坐标为17512,则其纵坐标为4,设双曲线的另一个焦点为F1(5,0),则|PF1|23,所以2a|PF1|PF|23176,所以a3,所以e,故选B.7(2019宁波市余姚中学高三期中)已知曲线1,当曲线表示焦点在y轴上的椭圆时k的取值范围
5、是_;当曲线表示双曲线时k的取值范围是_解析:当曲线表示焦点在y轴上的椭圆时,k2k2,所以k1或k2;当曲线表示双曲线时,k2k0,所以0k1.答案:k1或k20k18(2019金华十校联考)已知l是双曲线C:1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若0,则P到x轴的距离为_解析:F1(,0),F2(,0),不妨设l的方程为yx,则可设P(x0,x0),由(x0,x0)(x0,x0)3x60,得x0,故P到x轴的距离为|x0|2.答案:29(2019瑞安四校联考)设双曲线1(a0,b0)的两条渐近线与直线x分别交于A,B两点,F为该双曲线的右焦点若60AFB90,则该双曲线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第6讲 双曲线练习含解析 浙江 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何 双曲线 练习 解析
链接地址:https://www.77wenku.com/p-107314.html