浙江专用2020版高考数学大一轮复习 第六章数列与数学归纳法 第5讲 数列的综合应用练习(含解析)
《浙江专用2020版高考数学大一轮复习 第六章数列与数学归纳法 第5讲 数列的综合应用练习(含解析)》由会员分享,可在线阅读,更多相关《浙江专用2020版高考数学大一轮复习 第六章数列与数学归纳法 第5讲 数列的综合应用练习(含解析)(8页珍藏版)》请在七七文库上搜索。
1、第5讲 数列的综合应用 基础达标1(2019杭州第一次质量预测)正项等比数列an中的a1、a4 035是函数f(x)x34x26x3的极值点,则loga2 018()A1B2CD1解析:选A.因为f(x)x28x6,且a1、a4 035是方程x28x60的两根,所以a1a4 035a6,即a2 018,所以loga2 0181,故选A.2已知数列an满足:a11,an1(nN*)若bn1(n2)(nN*),b1,且数列bn是单调递增数列,则实数的取值范围是()AB1CDbn,所以(n2)2n(n12)2n1,解得b1,b1,b2(12)2,解得,所以的取值范围是0,且a1a2a7a816,则a
2、4a5的最小值为_解析:由等比数列性质得,a1a2a7a8(a4a5)416,又an0,所以a4a52.再由基本不等式,得a4a522.所以a4a5的最小值为2.答案:24(2019宁波市余姚中学高三期中)已知数列an满足a12,an1a6an6(nN*)(1)设Cnlog5(an3),求证Cn是等比数列;(2)求数列an的通项公式;(3)设bn,数列bn的前n项和为Tn,求证:Tn.解:(1)证明:由an1a6an6得an13(an3)2,所以log5(an13)2log5(an3),即Cn12Cn,所以Cn是以2为公比的等比数列(2)又C1log551,所以Cn2n1,即log5(an3)
3、2n1,所以an352n1故an52n13.(3)证明:因为bn,所以Tn.又0,所以Tn.5已知数列an满足a1且an1ana(nN*)(1)证明:12(nN*);(2)设数列a的前n项和为Sn,证明:(nN*)证明:(1)由题意得an1ana0,即an10.由0an得(1,2,所以12.(2)由题意得aanan1,所以Sna1an1.由和12得12,所以n2n,因此an1(nN*)由得an1;(2)求证:nN*时,2Sn2n.证明:(1)n2时,作差:an1an,所以an1an与anan1同号,由a14,可得a2,可得a2a1an1.(2)因为2a6an,所以2(a4)an2,即2(an1
4、2)(an12)an2,所以an12与an2同号,又因为a1220,所以an2.所以Sna1a2an42(n1)2n2.所以Sn2n2.由可得:,因此an2(a12),即an22.所以Sna1a2an2n22n.综上可得:nN*时,2Sn2n.8(2019浙江金华模拟)已知数列an满足a1,an1an2an11(nN*),令bnan1.(1)求数列bn的通项公式;(2)令cn,求证:c1c2cnn.解:(1)因为an1an2an11(nN*),bnan1,即anbn1.所以(bn11)(bn1)2(bn11)1,化为:1,所以数列是等差数列,首项为2,公差为1.所以2(n1)1n,所以bn.(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江专用2020版高考数学大一轮复习 第六章数列与数学归纳法 第5讲 数列的综合应用练习含解析 浙江 专用 2020 高考 数学 一轮 复习 第六 数列 归纳法 综合 应用 练习 解析
链接地址:https://www.77wenku.com/p-107323.html