鲁京津琼专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)
《鲁京津琼专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)(7页珍藏版)》请在七七文库上搜索。
1、第2讲空间几何体的表面积与体积一、选择题1.(2015全国卷)九章算术是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛 B.22斛C.36斛 D.66斛解析设米堆的底面半径为r尺,则r8,所以r.所以米堆的体积为Vr255(立方尺).故堆放的米约有1.6222(斛).答案B2.某几何体的三视图如图所示,且该几何体的体积
2、是3,则正视图中的x的值是()A.2 B. C. D.3解析由三视图知,该几何体是四棱锥,底面是直角梯形,且S底(12)23.Vx33,解得x3.答案D3.(2017合肥模拟)一个四面体的三视图如图所示,则该四面体的表面积是()A.1 B.2 C.12 D.2解析四面体的直观图如图所示.侧面SAC底面ABC,且SAC与ABC均为腰长是的等腰直角三角形,SASCABBC,AC2.设AC的中点为O,连接SO,BO,则SOAC,又SO平面SAC,平面SAC平面ABCAC,SO平面ABC,又BO平面ABC,SOBO.又OSOB1,SB,故SAB与SBC均是边长为的正三角形,故该四面体的表面积为22()
3、22.答案B4.(2015全国卷)已知A,B是球O的球面上两点,AOB90,C为该球面上的动点.若三棱锥OABC体积的最大值为36,则球O的表面积为()A.36 B.64 C.144 D.256解析因为AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥OABC的体积取得最大值.由R2R36,得R6.从而球O的表面积S4R2144.答案C5.(2017青岛模拟)如图,四棱锥PABCD的底面ABCD为平行四边形,NB2PN,则三棱锥NPAC与三棱锥DPAC的体积比为()A.12 B.18C.16 D.13解析设点P,N在平面ABCD内的投影分别为点P,N,则PP平面ABCD,NN平面ABCD
4、,所以PPNN,则在BPP中,由BN2PN得.V三棱锥NPACV三棱锥PABCV三棱锥NABCSABCPPSABCNNSABC(PPNN)SABCPPSABCPP,V三棱锥DPACV三棱锥PACDSACDPP,又四边形ABCD是平行四边形,SABCSACD,.故选D.答案D二、填空题6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_.解析设新的底面半径为r,由题意得r24r28524228,解得r.答案7.已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习含解析 鲁京津琼 专用 2020 高考 数学 一轮 复习 第八 立体几何 空间 向量 几何体
链接地址:https://www.77wenku.com/p-107358.html