江苏专用2020版高考数学大一轮复习第六章数列6.3等比数列及其前n项和教案含解析
《江苏专用2020版高考数学大一轮复习第六章数列6.3等比数列及其前n项和教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第六章数列6.3等比数列及其前n项和教案含解析(14页珍藏版)》请在七七文库上搜索。
1、6.3等比数列及其前n项和考情考向分析以考查等比数列的通项、前n项和及性质为主,等比数列的证明也是考查的热点本节内容在高考中既可以以填空题的形式进行考查,也可以以解答题的形式进行考查解答题往往与等差数列、数列求和、不等式等问题综合考查1等比数列的有关概念(1)定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列就叫做等比数列这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为q(nN*,q为非零常数)(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项即G是a与b的等比中项a,G,b成等比数列G2ab.2等比数列的有关公式
2、(1)通项公式:ana1qn1.(2)前n项和公式:Sn.3等比数列的常用性质(1)通项公式的推广:anamqnm(n,mN*)(2)若mnpq2k(m,n,p,q,kN*),则amanapaqa.(3)若数列an,bn(项数相同)是等比数列,则an,a,anbn,(0)仍然是等比数列(4)在等比数列an中,等距离取出若干项也构成一个等比数列,即an,ank,an2k,an3k,为等比数列,公比为qk.概念方法微思考1将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?提示仍然是一个等比数列,这两个数列的公比互为倒数2任意两个实数都有等比中项吗?提示不
3、是只有同号的两个非零实数才有等比中项3“b2ac”是“a,b,c”成等比数列的什么条件?提示必要不充分条件因为b2ac时不一定有a,b,c成等比数列,比如a0,b0,c1.但a,b,c成等比数列一定有b2ac.题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)满足an1qan(nN*,q为常数)的数列an为等比数列()(2)如果数列an为等比数列,bna2n1a2n,则数列bn也是等比数列()(3)如果数列an为等比数列,则数列lnan是等差数列()(4)数列an的通项公式是anan,则其前n项和为Sn.()(5)数列an为等比数列,则S4,S8S4,S12S8成等比数列()
4、题组二教材改编2P54T3已知an是等比数列,a22,a5,则公比q_.答案解析由题意知q3,q.3P54T9公比不为1的等比数列an满足a5a6a4a718,若a1am9,则m的值为_答案10解析由题意得2a5a618,a5a69,又a1am9,a1ama5a6,m10.题组三易错自纠4若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值为_答案解析1,a1,a2,4成等差数列,3(a2a1)41,a2a11.又1,b1,b2,b3,4成等比数列,设其公比为q,则b144,且b21q20,b22,.5设Sn为等比数列an的前n项和,8a2a50,则_.答案11解析设等比
5、数列an的公比为q,8a2a50,8a1qa1q40.q380,q2,11.6一种专门占据内存的计算机病毒开机时占据内存1MB,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机_秒,该病毒占据内存8GB.(1GB210MB)答案39解析由题意可知,病毒每复制一次所占内存的大小构成一等比数列an,且a12,q2,an2n,则2n8210213,n13.即病毒共复制了13次所需时间为13339(秒)题型一等比数列基本量的运算1已知等比数列an满足a1,a3a54(a41),则a2_.答案解析设等比数列an的公比为q,由题意知a3a54(a41)a,则a4a440,解得a42,又a1,所
6、以q38,即q2,所以a2a1q.2(2018全国)等比数列an中,a11,a54a3.(1)求an的通项公式;(2)记Sn为an的前n项和,若Sm63,求m.解(1)设an的公比为q,由题设得anqn1.由已知得q44q2,解得q0(舍去),q2或q2.故an(2)n1或an2n1(nN*)(2)若an(2)n1,则Sn.由Sm63,得(2)m188,此方程没有正整数解若an2n1,则Sn2n1.由Sm63,得2m64,解得m6.综上,m6.思维升华 (1)等比数列的通项公式与前n项和公式共涉及五个量a1,an,q,n,Sn,已知其中三个就能求另外两个(简称“知三求二”)(2)运用等比数列的
7、前n项和公式时,注意对q1和q1的分类讨论题型二等比数列的判定与证明例1已知数列an满足对任意的正整数n,均有an15an23n,且a18.(1)证明:数列an3n为等比数列,并求数列an的通项公式;(2)记bn,求数列bn的前n项和Tn.解(1)因为an15an23n,所以an13n15an23n3n15(an3n),又a18,所以a1350,所以数列an3n是首项为5、公比为5的等比数列所以an3n5n,所以an3n5n(nN*)(2)由(1)知,bn1n,则数列bn的前n项和Tn11121nnn(nN*)思维升华判定一个数列为等比数列的常见方法:(1)定义法:若q(q是非零常数),则数列
8、an是等比数列;(2)等比中项法:若aanan2(nN*,an0),则数列an是等比数列;(3)通项公式法:若anAqn(A,q为非零常数),则数列an是等比数列跟踪训练1设数列an的前n项和为Sn,已知a11,Sn14an2.(1)设bnan12an,证明:数列bn是等比数列;(2)求数列an的通项公式(1)证明由a11及Sn14an2,有a1a2S24a12.a25,b1a22a13.又,得an14an4an1(n2),an12an2(an2an1)(n2)bnan12an,bn2bn1(n2),故bn是首项b13,公比为2的等比数列(2)解由(1)知bnan12an32n1,故是首项为,
9、公差为的等差数列(n1),故an(3n1)2n2(nN*)题型三等比数列的综合应用例2(2018扬州模拟)已知各项都是正数的数列an的前n项和为Sn,且2Snaan,数列bn满足b1,2bn1bn.(1)求数列an,bn的通项公式;(2)设数列cn满足cn,求c1c2cn的和解(1)由题意知2Snaan,2Sn1aan1,得2an1aaan1an,即(an1an)(an1an1)0.因为an是正数数列,所以an1an10,即an1an1,所以an是公差为1的等差数列在2Snaan中,令n1,得a11,所以ann.由2bn1bn,得,所以数列是等比数列,其中首项为,公比为,所以n,即bn.(2)
10、由(1)知Sn,所以cn,所以c1c2cn.思维升华等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形(2)等比中项的变形(3)前n项和公式的变形根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口跟踪训练2(1)已知数列an是等比数列,若a21,a5,则a1a2a2a3anan1(nN*)的最小值为_答案2解析由已知得数列an的公比满足q3,解得q,a12,a3,故数列anan1是以2为首项,公比为的等比数列,a1a2a2a3anan1.(2)已知等比数列an的前n项和为Sn,且,则_.(n2,且nN*)答案解析很明显等比数列的公比q1,则由题意可得,解
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第六 数列
链接地址:https://www.77wenku.com/p-107560.html