江苏专用2020版高考数学大一轮复习第七章不等式推理与证明数学归纳法7.3二元一次不等式(组)与简单的线性规划问题教案含解析
《江苏专用2020版高考数学大一轮复习第七章不等式推理与证明数学归纳法7.3二元一次不等式(组)与简单的线性规划问题教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第七章不等式推理与证明数学归纳法7.3二元一次不等式(组)与简单的线性规划问题教案含解析(15页珍藏版)》请在七七文库上搜索。
1、7.3二元一次不等式(组)与简单的线性规划问题考情考向分析以画二元一次不等式(组)表示的平面区域、目标函数最值的求法为主,兼顾由最优解(可行域)情况确定参数的范围,以及简单线性规划问题的实际应用,加强转化与化归和数形结合思想的应用意识本节内容在高考中主要以填空题的形式进行考查,中低档难度1二元一次不等式(组)表示的平面区域不等式表示区域AxByC0直线AxByC0某一侧的所有点组成的平面区域不包括边界直线AxByC0包括边界直线不等式组各个不等式所表示平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组
2、目标函数关于x,y的函数解析式,如z2x3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题概念方法微思考1不等式x0表示的平面区域是什么?提示不等式x0表示的区域是y轴的右侧(包括y轴)2可行解一定是最优解吗?二者有何关系?提示不一定最优解是可行解中的一个或多个最优解必定是可行解,但可行解不一定是最优解,最优解不一定唯一题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)不等式AxByC0表示的平面区域一定在直线AxByC0
3、的上方()(2)点(x1,y1),(x2,y2)在直线AxByC0同侧的充要条件是(Ax1By1C)(Ax2By2C)0,异侧的充要条件是(Ax1By1C)(Ax2By2C)0.()(3)第二、四象限表示的平面区域可以用不等式xy0表示()(4)线性目标函数的最优解是唯一的()(5)目标函数zaxby(b0)中,z的几何意义是直线axbyz0在y轴上的截距()题组二教材改编2P74T1点(3,1)和(4,6)在直线3x2ya0的两侧,则a的取值范围是_答案(7,24)解析点(3,1)和(4,6)在直线3x2ya0的两侧,说明将这两点坐标代入3x2ya后,符号相反,所以(92a)(1212a)0
4、,解得7a24.3P77T2不等式组所表示的平面区域的面积是_答案25解析直线xy40与直线xy0的交点为A(2,2),直线xy40与直线x3的交点为B(3,7),直线xy0与直线x3的交点为C(3,3),则不等式组表示的平面区域是一个以点A(2,2),B(3,7),C(3,3)为顶点的三角形及其内部,所以其面积为SABC51025.4P84T4设变量x,y满足约束条件则zx3y的最小值为_答案8解析画出可行域与目标函数线如图(阴影部分含边界),由图可知,目标函数在点(2,2)处取最小值8.题组三易错自纠5(2018全国)若x,y满足约束条件则z3x2y的最大值为_答案6解析作出满足约束条件的
5、可行域如图阴影部分(包含边界)所示由z3x2y,得yx.作直线l0:yx,平移直线l0,当直线yx过点(2,0)时,z取最大值,zmax32206.6已知x,y满足若使得zaxy取最大值的点(x,y)有无数个,则a的值为_答案1解析先根据约束条件画出可行域,如图中阴影部分(含边界)所示,当直线zaxy和直线AB重合时,z取得最大值的点(x,y)有无数个,akAB1,a1.题型一二元一次不等式(组)表示的平面区域命题点1不含参数的平面区域问题例1在平面直角坐标系中,不等式组表示的平面区域的面积是_答案解析作出不等式组表示的平面区域是以点O(0,0),B(2,0)和A(1,)为顶点的三角形及内部区
6、域,即如图所示的阴影部分(含边界),由图知该平面区域的面积为2.命题点2含参数的平面区域问题例2若不等式组表示的平面区域的形状是三角形,则a的取值范围是_答案(0,1解析作出不等式组表示的平面区域如图中阴影部分(含边界)所示由图知,要使原不等式组表示的平面区域的形状为三角形,只需动直线l:xya在l1,l2之间(包含l2,不包含l1)或l3上方(包含l3)思维升华平面区域的形状问题主要有两种题型(1)确定平面区域的形状,求解时先画满足条件的平面区域,然后判断其形状;(2)根据平面区域的形状求解参数问题,求解时通常先画满足条件的平面区域,但要注意对参数进行必要的讨论跟踪训练1(1)不等式组表示的
7、平面区域的形状为_三角形答案等腰直角解析作出不等式组表示的平面区域,如图所示,易知平面区域的形状为等腰直角三角形(阴影部分,含边界)(2)已知由不等式组确定的平面区域的面积为7,则k的值为_答案1解析作出不等式组所表示的平面区域,如图阴影部分(含边界)所示,可知该区域是等腰直角三角形且面积为8.由于直线ykx2恒过点B(0,2),且原点的坐标恒满足ykx2,当k0时,y2,此时平面区域的面积为6,由于67,由此可得k0.由可得D,依题意应有21,解得k1或k3(舍去)题型二求目标函数的最值问题命题点1求线性目标函数的最值例3(1)(2018全国)若x,y满足约束条件则zxy的最大值为_答案9解
8、析由不等式组画出可行域如图阴影部分(含边界)目标函数xy取得最大值斜率为1的直线xyz(z看作常数)在y轴上的截距最大,由图可得当直线xyz过点C时,z取得最大值由得点C(5,4),zmax549.(2)(2018南通模拟)已知实数x,y满足约束条件则z|x|y3|的取值范围是_答案1,7解析作出约束条件表示的可行域如图中阴影部分(含边界)所示,则0x4且0y3,所以z|x|y3|xy3,平移目标直线yxz3经过点A(4,0)时,z取得最大值7,经过点B(1,3)时,z取得最小值1,所以z的取值范围为1,7命题点2求非线性目标函数的最值例4(1)(2018徐州模拟)已知(x,y)满足则k的最大
9、值为_答案1解析画出可行域如图阴影部分(含边界):因为k的几何意义为可行域内的点P(x,y)与定点A(1,0)连线的斜率,则由图象可知AB的斜率最大,其中B(0,1),此时k1.(2)(2018扬州模拟)若实数x,y满足约束条件则x2y2的取值范围是_答案解析作出约束条件表示的可行域如图中阴影部分(含边界)所示,则x2y2表示可行域内的点到坐标原点的距离的平方由图知(x2y2)max423225,(x2y2)min2,所以x2y2的取值范围为.命题点3求参数值或取值范围例5已知实数x,y满足如果目标函数zxy的最小值为1,则实数m_.答案5解析绘制不等式组表示的平面区域如图阴影部分所示(含边界
10、),联立直线方程可得交点坐标为A,由目标函数的几何意义可知目标函数在点A处取得最小值,所以1,解得m5.思维升华常见的三类目标函数(1)截距型:形如zaxby.(2)距离型:形如z(xa)2(yb)2.(3)斜率型:形如z.跟踪训练2(1)若实数x,y满足约束条件则z2xy的最大值为_答案10解析先根据约束条件画出可行域,如图阴影部分所示(含边界),将z2xy的最大值转化为直线y2xz在y轴上截距的最小值当直线y2xz经过点A时,在y轴上的截距最小,z最大,又A(3,4),故z的最大值为10.(2)已知x,y满足且z3xy的最大值为2,则实数m的值为_答案2解析由约束条件作出可行域(图略),z
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第七 不等式 推理 证明 归纳法
链接地址:https://www.77wenku.com/p-107561.html