江苏专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的解析几何问题第2课时定点定值问题教案含解析
《江苏专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的解析几何问题第2课时定点定值问题教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的解析几何问题第2课时定点定值问题教案含解析(14页珍藏版)》请在七七文库上搜索。
1、第2课时定点、定值问题题型一定点问题例1已知椭圆C:1(ab0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点若直线P2A与直线P2B的斜率的和为1,证明:l过定点(1)解由于P3,P4两点关于y轴对称,故由题设知椭圆C经过P3,P4两点又由知,椭圆C不经过点P1,所以点P2在椭圆C上因此解得故椭圆C的方程为y21.(2)证明设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:xt,由题设知t0,且|t|0.设A(x1,y1),B(x2,y2),则x1,2,所以x1x2,x1x2.而k1
2、k2.由题设知k1k21,故(2k1)x1x2(m1)(x1x2)0.即(2k1)(m1)0,解得k.当且仅当m1时,0,于是l:yxm,即y1(x2),所以l过定点(2,1)思维升华圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关跟踪训练1已知焦距为2的椭圆C:1(ab0)的右顶点为A,直线y与椭圆C交于P,Q两点(P在Q的左边),Q在x轴上的射影为B,且四边形ABPQ是平行四边形(1)求椭圆C的方程;(2)斜率为k的直线l与椭圆C
3、交于两个不同的点M,N.若直线l过原点且与坐标轴不重合,E是直线3x3y20上一点,且EMN是以E为直角顶点的等腰直角三角形,求k的值;若M是椭圆的左顶点,D是直线MN上一点,且DAAM,点G是x轴上异于点M的点,且以DN为直径的圆恒过直线AN和DG的交点,求证:点G是定点(1)解由题意可得2c2,即c,设Q,因为四边形ABPQ为平行四边形,PQ2n,ABan,所以2nan,n,则1,解得b22,a2b2c24,可得椭圆C的方程为1.(2)解将直线ykx(k0)代入椭圆方程,可得(12k2)x24,解得x,可设M,由E是3x3y20上一点,可设E,E到直线kxy0的距离为d,因为EMN是以E为
4、直角顶点的等腰直角三角形,所以OEMN,OMd,即有,由得m(k1),代入式,化简整理可得7k218k80,解得k2或.证明由M(2,0),可得直线MN的方程为yk(x2)(k0),代入椭圆方程可得(12k2)x28k2x8k240,解得xN,yNk(xN2),即N,设G(t,0)(t2),由题意可得D(2,4k),A(2,0),以DN为直径的圆恒过直线AN和DG的交点,可得ANDG,即有0,即为(t2,4k)0,解得t0.故点G是定点,即为原点(0,0)题型二定值问题例2(2018苏锡常镇模拟)在平面直角坐标系xOy中,已知椭圆1(ab0)的焦距为2,离心率为,椭圆的右顶点为A.(1)求该椭
5、圆的方程;(2)如图,过点D(,)作直线PQ交椭圆于两个不同点P,Q,求证:直线AP,AQ的斜率之和为定值(1)解由题意可知,椭圆1(ab0),焦点在x轴上,2c2,c1,椭圆的离心率e,则a,b2a2c21,则椭圆的标准方程为y21.(2)证明设P(x1,y1),Q(x2,y2),A(,0),由题意知直线PQ斜率存在,设其方程为yk(x),则整理得(2k21)x2(4k24k)x4k28k20.所以x1,2,所以x1x2,x1x2,则y1y2k(x1x2)2k2,则kAPkAQ.由y1x2y2x1k(x1)x2k(x2)x12kx1x2(k)(x1x2),kAPkAQ1,直线AP,AQ的斜率
6、之和为定值1.思维升华圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值(2)求点到直线的距离为定值利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得(3)求某线段长度为定值利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得跟踪训练2(2018南通考试)如图,已知圆O的方程为x2y24,过点P(0,1)的直线与圆O交于点A,B,与x轴交于点Q,设,u,求证:u为定值证明当AB与x轴垂直时,此时点Q与点O重合,从而2,u,u.当点Q与点O不重合时,直线AB的斜率存在设直线AB的方程为y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何 专题 突破 中的 问题 课时 定点 教案 解析
链接地址:https://www.77wenku.com/p-107565.html