江苏专用2020版高考数学大一轮复习第七章不等式推理与证明数学归纳法7.2一元二次不等式及其解法教案含解析
《江苏专用2020版高考数学大一轮复习第七章不等式推理与证明数学归纳法7.2一元二次不等式及其解法教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第七章不等式推理与证明数学归纳法7.2一元二次不等式及其解法教案含解析(13页珍藏版)》请在七七文库上搜索。
1、7.2一元二次不等式及其解法考情考向分析以理解一元二次不等式的解法为主,常与集合的运算相结合考查一元二次不等式的解法,有时也在导数的应用中用到,加强函数与方程思想,分类讨论思想和数形结合思想的应用意识在高考中常以填空题的形式考查,属于低档题,若在导数的应用中考查,难度较高一元二次不等式的解集判别式b24ac000)的图象方程ax2bxc=0(a0)的根有两相异实根x1,x2(x10(a0)的解集x|xx2x|xRax2bxc0)的解集x|x1x0(a0)的解集与其对应的函数yax2bxc的图象有什么关系?提示ax2bxc0(a0)的解集就是其对应函数yax2bxc的图象在x轴上方的部分所对应的
2、x的取值范围2一元二次不等式ax2bxc0(0恒成立的条件是ax2bxc0恒成立的条件是题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)若不等式ax2bxc0.()(2)若不等式ax2bxc0的解集是(,x1)(x2,),则方程ax2bxc0的两个根是x1和x2.()(3)若方程ax2bxc0(a0)没有实数根,则不等式ax2bxc0的解集为R.()(4)不等式ax2bxc0在R上恒成立的条件是a0且b24ac0.()(5)若二次函数yax2bxc的图象开口向下,则不等式ax2bxc0的解集为_答案x|3x1解析原不等式可化为x22x30,得3x0的解集是,则ab_.答案1
3、4解析x1,x2是方程ax2bx20的两个根,解得ab14.题组三易错自纠4不等式x23x40的解集为_(用区间表示)答案(4,1)解析由x23x40可知,(x4)(x1)0,得4x1.5函数y的定义域为_答案(2,1解析由02x1,得函数的定义域为(2,16不等式(a2)x22(a2)x40对一切xR恒成立,则实数a的取值范围是_答案(2,2解析设方程(a2)x22(a2)x40,当a2时,由题意得,2a2;当a2时,原式化为40,不等式恒成立,2a2.题型一一元二次不等式的求解命题点1不含参的不等式例1已知集合Ax|x2x20,By|y2x,则AB_.答案(0,2)解析由题意得Ax|x2x
4、20x|1x0,ABx|0x2(0,2)命题点2含参不等式例2解关于x的不等式ax2(a1)x10)解原不等式变为(ax1)(x1)0,所以(x1)1时,解为x1;当a1时,解集为;当0a1时,解为1x.综上,当0a1时,不等式的解集为.命题点3分式不等式例3已知关于x的不等式1.(1)当a1时,解该不等式;(2)当a为任意实数时,解该不等式解(1)当a1时,不等式化为1,可得0,1x2,不等式的解集为x|1x2(2)原不等式可化为0,可化为(ax2)(x1)1.当a0,x1或x0时,(x1)1,即0a2时,可得1x,若1,即a2时,x,若02时,x1.综上,当a1,当0a2时,原不等式的解集
5、为.思维升华对含参的不等式,应对参数进行分类讨论:根据二次项系数为正、负及零进行分类根据判别式判断根的个数有两个根时,有时还需根据两根的大小进行讨论跟踪训练1解不等式12x2axa2(aR)解原不等式可化为12x2axa20,即(4xa)(3xa)0,令(4xa)(3xa)0,解得x1,x2.当a0时,不等式的解集为;当a0时,不等式的解集为(,0)(0,);当a0时,不等式的解集为.题型二三个“二次”的关系例4(1)已知函数f(x)2x2bxc(b,cR)的值域为0,),若关于x的不等式f(x)m的解集为(n,n10),求实数m的值解由已知可得b28c0,c,由不等式2x2bxm0的解集为(
6、n,n10),可得方程2x2bxm0的两根为n,n10,10,m50.(2)已知方程x2ax20的两根都小于1,求实数a的取值范围解设f(x)x2ax2,由题意可得解得2a0(或ax2bxc0)的解集的两个端点跟踪训练2若,是方程x2(2m1)x42m0的两个根,且2,求实数m的取值范围解设f(x)x2(2m1)x42m,是方程f(x)0的根,且2,f(2)0,42(2m1)42m0,m3,故实数m的取值范围是(,3)题型三一元二次不等式恒成立问题命题点1在R上的恒成立问题例5已知函数f(x)mx2mx1.若对于xR,f(x)0恒成立,求实数m的取值范围解当m0时,f(x)10恒成立当m0时,
7、则即4m0.综上,4m0,故m的取值范围是(4,0命题点2在给定区间上的恒成立问题例6已知函数f(x)mx2mx1.若对于x1,3,f(x)5m恒成立,求实数m的取值范围解要使f(x)m5在x1,3上恒成立,即m2m60时,g(x)在1,3上是增函数,所以g(x)maxg(3),即7m60,所以m,所以0m;当m0时,60恒成立;当m0时,g(x)在1,3上是减函数,所以g(x)maxg(1),即m60,所以m6,所以m0,又因为m(x2x1)60,所以m.因为函数y在1,3上的最小值为,所以只需m即可所以m的取值范围是.引申探究1若将“f(x)5m恒成立”改为“f(x)5m无解”,如何求m的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第七 不等式 推理 证明 归纳法
链接地址:https://www.77wenku.com/p-107568.html