江苏专用2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案含解析
《江苏专用2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案含解析(13页珍藏版)》请在七七文库上搜索。
1、9.3圆的方程考情考向分析以考查圆的方程为主,与圆有关的轨迹问题、最值问题也是考查的热点,属中档题题型主要以填空题为主,要求相对较低,但内容很重要,在解答题中也会出现圆的定义与方程定义平面内到定点的距离等于定长的点的集合叫做圆方程标准式(xa)2(yb)2r2(r0)圆心为(a,b)半径为r一般式x2y2DxEyF0充要条件:D2E24F0圆心坐标:半径r概念方法微思考1如何确定圆的方程?其步骤是怎样的?提示确定圆的方程的主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程(2)根据条件列出关于a,b,r或D,E,F的方程组(3)解出a,b,r或D,E,F代入标准方程或一般方
2、程2点与圆的位置关系有几种?如何判断?提示点和圆的位置关系有三种已知圆的标准方程(xa)2(yb)2r2,点M(x0,y0)(1)点在圆上:(x0a)2(y0b)2r2;(2)点在圆外:(x0a)2(y0b)2r2;(3)点在圆内:(x0a)2(y0b)20.()(4)方程x22axy20一定表示圆()(5)若点M(x0,y0)在圆x2y2DxEyF0外,则xyDx0Ey0F0.()题组二教材改编2P111练习T4圆x2y24x6y0的圆心坐标是_答案(2,3)解析由(x2)2(y3)213,知圆心坐标为(2,3)3P111习题T1(3)已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上
3、,则圆C的标准方程为_答案(x2)2y210解析设圆心坐标为(a,0),易知,解得a2,圆心为(2,0),半径为,圆C的标准方程为(x2)2y210.题组三易错自纠4若方程x2y2mx2y30表示圆,则m的取值范围是_答案(,2)(2,)解析将x2y2mx2y30化为圆的标准方程得2(y1)22.由其表示圆可得20,解得m2.5若点(1,1)在圆(xa)2(ya)24的内部,则实数a的取值范围是_答案1a1解析点(1,1)在圆内,(1a)2(a1)24,即1a0),又圆与直线4x3y0相切,1,解得a2或a(舍去)圆的标准方程为(x2)2(y1)21.题型一圆的方程例1求经过点A(2,4),且
4、与直线l:x3y260相切于点B(8,6)的圆的方程解方法一设圆心为C,所求圆的方程为x2y2DxEyF0,则圆心C,kCB.圆C与直线l相切,kCBkl1,即1.又有(2)2(4)22D4EF0,又82628D6EF0.联立,可得D11,E3,F30,所求圆的方程为x2y211x3y300.方法二设圆的圆心为C,则CBl,可得CB所在直线的方程为y63(x8),即3xy180.由A(2,4),B(8,6),得AB的中点坐标为(3,1)又kAB1,AB的垂直平分线的方程为y1(x3),即xy40.由联立,解得即圆心坐标为.所求圆的半径r,所求圆的方程为22.思维升华 (1)直接法:直接求出圆心
5、坐标和半径,写出方程(2)待定系数法若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值跟踪训练1(1)(2018如皋模拟)已知圆C过点(2,),且与直线xy30相切于点(0,),则圆C的方程为_答案(x1)2y24解析设圆心为(a,b),半径为r,则解得a1,b0,则r2,即所求圆的方程为(x1)2y24.(2)一个圆与y轴相切,圆心在直线x3y0上,且在直线yx上截得的弦长为2,则该圆的方程为_答案x2y26x2y10或x2y26x2y10解析方法一所求圆的圆心在直线x3y0上,设所求
6、圆的圆心为(3a,a),又所求圆与y轴相切,半径r3|a|,又所求圆在直线yx上截得的弦长为2,圆心(3a,a)到直线yx的距离d,d2()2r2,即2a279a2,a1.故所求圆的方程为(x3)2(y1)29或(x3)2(y1)29,即x2y26x2y10或x2y26x2y10.方法二设所求圆的方程为(xa)2(yb)2r2,则圆心(a,b)到直线yx的距离为,r27,即2r2(ab)214.由于所求圆与y轴相切,r2a2,又所求圆的圆心在直线x3y0上,a3b0,联立,解得或故所求圆的方程为(x3)2(y1)29或(x3)2(y1)29,即x2y26x2y10或x2y26x2y10.方法三
7、设所求圆的方程为x2y2DxEyF0,则圆心坐标为,半径r.在圆的方程中,令x0,得y2EyF0.由于所求圆与y轴相切,0,则E24F.圆心到直线yx的距离为d,由已知得d2()2r2,即(DE)2562(D2E24F)又圆心在直线x3y0上,D3E0.联立,解得或故所求圆的方程为x2y26x2y10或x2y26x2y10.题型二与圆有关的最值问题例2已知点(x,y)在圆(x2)2(y3)21上,求xy的最大值和最小值解设txy,则yxt,t可视为直线yxt在y轴上的截距,xy的最大值和最小值就是直线与圆有公共点时直线在y轴上的截距的最大值和最小值,即直线与圆相切时在y轴上的截距由直线与圆相切
8、得圆心到直线的距离等于半径,即1,解得t1或t1.xy的最大值为1,最小值为1.引申探究1在本例的条件下,求的最大值和最小值解可视为点(x,y)与原点连线的斜率,的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率设过原点的直线的方程为ykx,由直线与圆相切得圆心到直线的距离等于半径,即1,解得k2或k2,的最大值为2,最小值为2.2在本例的条件下,求的最大值和最小值解,求它的最值可视为求点(x,y)到定点(1,2)的距离的最值,可转化为求圆心(2,3)到定点(1,2)的距离与半径的和或差又圆心到定点(1,2)的距离为,的最大值为1,最小值为1.思维升华
9、与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解(2)与圆上点(x,y)有关代数式的最值的常见类型及解法形如u型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;形如taxby型的最值问题,可转化为动直线的截距的最值问题;形如(xa)2(yb)2型的最值问题,可转化为动点到定点(a,b)的距离的平方的最值问题跟踪训练2已知实数x,y满足方程x2y24x10.求:(1)的最大值和最小值;(2)yx的最大值和最小值;(3)x2y2的最大值和最小值解原方程可化为(x2)2y23,表示以(2
10、,0)为圆心,为半径的圆(1)的几何意义是圆上一点与原点连线的斜率,所以设k,即ykx.当直线ykx与圆相切时(如图),斜率k取最大值和最小值,此时,解得k.所以的最大值为,最小值为.(2)yx可看作是直线yxb在y轴上的截距,如图所示,当直线yxb与圆相切时,其在y轴上的截距b取得最大值和最小值,此时,解得b2.所以yx的最大值为2,最小值为2.(3)如图所示,x2y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值又圆心到原点的距离为2,所以x2y2的最大值是(2)274,x2y2的最小值是(2)274.题型三与圆有关的轨迹问题例3已知R
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何
链接地址:https://www.77wenku.com/p-107588.html