江苏专用2020版高考数学大一轮复习第八章立体几何8.3直线平面垂直的判定与性质教案含解析
《江苏专用2020版高考数学大一轮复习第八章立体几何8.3直线平面垂直的判定与性质教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第八章立体几何8.3直线平面垂直的判定与性质教案含解析(18页珍藏版)》请在七七文库上搜索。
1、8.3直线、平面垂直的判定与性质考情考向分析直线、平面垂直的判定及其性质是高考中的重点考查内容,涉及线线垂直、线面垂直、面面垂直的判定及其应用等内容题型主要以解答题的形式出现,解题要求有较强的推理论证能力,广泛应用转化与化归的思想1直线与平面垂直(1)定义如果直线a与平面内的任意一条直线都垂直,则直线a与平面互相垂直,记作a,直线a叫做平面的垂线,平面叫做直线a的垂面垂线和平面的交点即为垂足(2)判定定理与性质定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面l性质定理如果两条直线垂直于同一个平面,那么这两条直线平行ab2.直线和平面所成
2、的角(1)定义平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0的角(2)范围:.3平面与平面垂直(1)二面角的有关概念二面角:一条直线和由这条直线出发的两个半平面所组成的图形叫做二面角;二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的射线,这两条射线所成的角叫做二面角的平面角(2)平面和平面垂直的定义如果两个平面所成的二面角是直二面角,那么就说这两个平面互相垂直(3)平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个
3、平面的一条垂线,那么这两个平面互相垂直性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面l概念方法微思考1若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面吗?提示垂直若两平行线中的一条垂直于一个平面,那么在平面内可以找到两条相交直线与该直线垂直,根据异面直线所成的角,可以得出两平行直线中的另一条也与平面内的那两条直线成90的角,即垂直于平面内的这两条相交直线,所以垂直于这个平面2两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面吗?提示垂直在两个相交平面内分别作与第三个平面交线垂直的直线,则这两条直线都垂直于第三个平面,那么这两条直线互相平
4、行由线面平行的性质定理可知,这两个相交平面的交线与这两条垂线平行,所以该交线垂直于第三个平面题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)直线l与平面内的无数条直线都垂直,则l.()(2)直线a,b,则ab.()(3)若,a,则a.()(4)若直线a平面,直线b,则直线a与b垂直()(5)若平面内的一条直线垂直于平面内的无数条直线,则.()题组二教材改编2P43练习T2下列命题中正确的是_(填序号)如果平面平面,那么平面内一定存在直线平行于平面;如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面;如果平面平面,平面平面,l,那么l平面;如果平面平面,那么平面内所有直
5、线都垂直于平面.答案解析对于,若平面平面,则平面内的直线可能不垂直于平面,即与平面的关系还可以是斜交、平行或在平面内,其他命题均是正确的3P45T11在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PAPBPC,则点O是ABC的_心;(2)若PAPB,PBPC,PCPA,则点O是ABC的_心答案(1)外(2)垂解析(1)如图1,连结OA,OB,OC,OP,在RtPOA,RtPOB和RtPOC中,PAPCPB,所以OAOBOC,即O为ABC的外心(2)如图2,延长AO,BO,CO分别交BC,AC,AB于点H,D,G.PCPA,PBPC,PAPBP,PA,PB平面PAB,PC平面PAB
6、,又AB平面PAB,PCAB,ABPO,POPCP,PO,PC平面PGC,AB平面PGC,又CG平面PGC,ABCG,即CG为ABC边AB上的高同理可证BD,AH分别为ABC边AC,BC上的高,即O为ABC的垂心题组三易错自纠4若l,m为两条不同的直线,为平面,且l,则“m”是“ml”的_条件(填“充分不必要”“必要不充分”“充要”“既不充分又不必要”)答案充分不必要解析由l且m能推出ml,充分性成立;若l且ml,则m或者m,必要性不成立,因此“m”是“ml”的充分不必要条件5.如图所示,在正方体ABCDA1B1C1D1中,点O,M,N分别是线段BD,DD1,D1C1的中点,则直线OM与AC,
7、MN的位置关系是_答案垂直解析因为DD1平面ABCD,所以ACDD1,又因为ACBD,DD1BDD,所以AC平面BDD1B1,因为OM平面BDD1B1,所以OMAC.设正方体的棱长为2,则OM,MN,ON,所以OM2MN2ON2,所以OMMN.6如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上不同于A,B的任一点,则图中直角三角形的个数为_答案4解析因为AB是圆O的直径,所以ACBC,ACB是直角三角形;由PA平面ABC可得,PAAB,PAAC,所以PAB与PAC是直角三角形;因为PA平面ABC,且BC平面ABC,所以PABC.又BCAC,PAACA,所以BC平面PAC.而PC平面
8、PAC,所以BCPC,PCB是直角三角形故直角三角形的个数为4.题型一直线与平面垂直的判定与性质例1如图所示,在直三棱柱ABCA1B1C1中,ABACAA13,BC2,D是BC的中点,F是CC1上一点当CF2时,证明:B1F平面ADF.证明因为ABAC,D是BC的中点,所以ADBC.在直三棱柱ABCA1B1C1中,因为BB1底面ABC,AD底面ABC,所以ADB1B.因为BCB1BB,BC,B1B平面B1BCC1,所以AD平面B1BCC1.因为B1F平面B1BCC1,所以ADB1F.方法一在矩形B1BCC1中,因为C1FCD1,B1C1CF2,所以RtDCFRtFC1B1,所以CFDC1B1F
9、,所以B1FD90,所以B1FFD.因为ADFDD,AD,FD平面ADF,所以B1F平面ADF.方法二在RtB1BD中,BDCD1,BB13,所以B1D.在RtB1C1F中,B1C12,C1F1,所以B1F.在RtDCF中,CF2,CD1,所以DF.显然DF2B1F2B1D2,所以B1FD90.所以B1FFD.因为ADFDD,AD,FD平面ADF,所以B1F平面ADF.思维升华证明线面垂直的常用方法及关键(1)证明线面垂直的常用方法:判定定理;垂直于平面的传递性;面面垂直的性质(2)证明线面垂直的关键是证线线垂直,而证明线线垂直,则需借助线面垂直的性质跟踪训练1如图,在三棱锥ABCD中,ABA
10、D,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.证明(1)在平面ABD内,因为ABAD,EFAD,则ABEF.又因为EF平面ABC,AB平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面ABD平面BCDBD,BC平面BCD,BCBD,所以BC平面ABD.因为AD平面ABD,所以BCAD.又ABAD,BCABB,AB平面ABC,BC平面ABC,所以AD平面ABC.又因为AC平面ABC,所以ADAC.题型二平面与平面垂直的判定与性质例2如图,在四棱锥PABCD中,底面ABCD为矩形,AP
11、平面PCD,E,F分别为PC,AB的中点(1)求证:平面PAD平面ABCD;(2)求证:EF平面PAD.证明(1)因为AP平面PCD,CD平面PCD,所以APCD.又四边形ABCD为矩形,所以ADCD,又因为APADA,AP平面PAD,AD平面PAD,所以CD平面PAD.又因为CD平面ABCD,所以平面PAD平面ABCD.(2)连结AC,BD交于点O,连结OE,OF.因为四边形ABCD为矩形,所以O为AC的中点因为E为PC的中点,所以OEPA.因为OE平面PAD,PA平面PAD,所以OE平面PAD.同理可证OF平面PAD.因为OEOFO,OB,OF平面OEF,所以平面OEF平面PAD.因为EF
12、平面OEF,所以EF平面PAD.思维升华 (1)判定面面垂直的方法面面垂直的定义;面面垂直的判定定理(a,a)(2)在已知平面垂直时,一般要用性质定理进行转化在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直跟踪训练2(2018南京、盐城模拟)如图,在直三棱柱ABCA1B1C1中,BCAC,D,E分别是AB,AC的中点(1)求证:B1C1平面A1DE;(2)求证:平面A1DE平面ACC1A1.证明(1)因为D,E分别是AB,AC的中点,所以DEBC.又因为在三棱柱ABCA1B1C1中,B1C1BC,所以B1C1DE.又B1C1平面A1DE,DE平面A1DE,所以B1C1平面A1
13、DE.(2)在直三棱柱ABCA1B1C1中,CC1底面ABC,又DE底面ABC,所以CC1DE.又BCAC,DEBC,所以DEAC.又CC1,AC平面ACC1A1,且CC1ACC,所以DE平面ACC1A1,又因为DE平面A1DE,所以平面A1DE平面ACC1A1.题型三垂直关系中的探索性问题例3如图,在直三棱柱ABCA1B1C1中,D,E分别是棱BC,AB的中点,点F在棱CC1上,已知ABAC,AA13,BCCF2.(1)求证:C1E平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM平面ADF.(1)证明连结CE交AD于O,连结OF.因为CE,AD为ABC的中线,则O为ABC的重
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第八 立体几何
链接地址:https://www.77wenku.com/p-107605.html