2020年高考物理一轮复习第五单元万有引力定律第1讲万有引力定律及其应用练习含解析新人教版
《2020年高考物理一轮复习第五单元万有引力定律第1讲万有引力定律及其应用练习含解析新人教版》由会员分享,可在线阅读,更多相关《2020年高考物理一轮复习第五单元万有引力定律第1讲万有引力定律及其应用练习含解析新人教版(15页珍藏版)》请在七七文库上搜索。
1、万有引力定律及其应用万有引力定律与航空是每年高考的必考内容之一,一般以选择题的形式出现,命题素材突出物理与现代科技,特别是在当前星际探索成为世界新的科技竞争焦点的形势下,试题与现代航天技术的联系会更加密切。该部分内容常与牛顿运动定律、机械能守恒、动能定理等力学规律来综合考查。具体特点有:(1)考查万有引力定律的应用,结合牛顿第二定律,估算重力加速度、天体质量、密度等问题。(2)以卫星或探测器的匀速圆周运动为背景,考查速度、角速度、周期和向心加速度与轨道半径的关系。(3)考查卫星的发射与变轨时各物理量的比较。(4)考查万有引力定律在双星或多星中的应用。(5)结合卫星或探测器的运动考查动能定理与机
2、械能守恒等知识在天体运动中的具体应用。预测2020年高考对万有引力定律与航空的考查主要有两点:一是该定律与牛顿第二定律结合估算重力加速度、天体质量、密度;二是以卫星、飞船等航天器为素材分析其运行规律。值得注意的是,由于近年来我国在航天方面的迅猛发展,高考常常结合我国的航天实际成就来命题,特别是我国的载人航天已取得了成功,我国载人空间站工程启动实施,我国自主研发的“北斗卫星导航系统”的运用,探月计划也进入实质性进程之中,等等,高考结合这些素材命题的可能性较大,因此我们应高度重视这些知识点的应用。第1讲万有引力定律及其应用1开普勒行星运动定律(1)开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,
3、太阳处在椭圆的一个焦点上。说明:每个椭圆有两个焦点,所有行星的椭圆轨道有一个焦点是相互重合的,太阳就处在这个重合的焦点上;不同行星绕太阳运行时的椭圆轨道是不同的。(2)开普勒第二定律:对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。说明:行星运动的线速度大小在轨道上各点是不同的;行星在近日点的速率大于在远日点的速率。(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等,表达式为a3T2=k。注意:行星绕太阳的运动通常按圆轨道处理。开普勒行星运动定律也适用于其他天体,例如月球、卫星绕地球的运动。开普勒第三定律a3T2=k中,k值只与中心天体的质量
4、有关,不同的中心天体k值不同。1.1(2018浙江温州十校联考)2016年8月16日凌晨,被命名为“墨子号”的中国首颗量子科学实验卫星开启星际之旅,其运行轨道为如图所示的绕地球E运动的椭圆轨道,地球E位于椭圆的一个焦点上。轨道上标记了卫星经过相等时间间隔(t=T14,T为运转周期)的位置。如果作用在卫星上的力只有地球E对卫星的万有引力,则下列说法正确的是()。A.面积S1S2B.卫星在轨道A点的速度小于在B点的速度C.T2=Ca3,其中C为常数,a为椭圆半长轴D.T2=Cb3,其中C为常数,b为椭圆半短轴【答案】C1.2(2018青海西宁仿真模拟)北斗卫星导航系统(BDS)是中国自行研制的全球
5、卫星导航系统,该系统由35颗卫星组成,卫星的轨道有三种:地球同步轨道、中轨道和倾斜轨道。其中,同步轨道半径大约是中轨道半径的1.5倍,那么同步卫星与中轨道卫星的周期之比约为()。A.3212B.3223C.3232D.322【答案】C2万有引力定律(1)公式:F=Gm1m2r2,其中G=6.6710-11Nm2/kg2,叫引力常量。(2)公式F=Gm1m2r2只适用于两质点间的相互作用。实际运用有下列三种情况。两个质量分布均匀的球体间的相互作用,也可用这一公式来计算,其中r是两个球体球心间的距离。一个均匀球体与一个质点的万有引力也适用,其中r为球心到质点间的距离。两物体间的距离远大于物体本身的
6、大小,此公式也适用,此时的r表示两物体重心间的距离。2.1(2018山东微山一中期末)(多选)如图所示,a、b、c是在地球大气层外圆形轨道上运行的三颗人造地球卫星,a、b质量相同,且小于c的质量,则()。A.b所需向心力最大B.b、c的周期相等,且大于a的周期C.b、c的向心加速度相等,且大于a的向心加速度D.b、c的线速度大小相等,且小于a的线速度【答案】BD2.2(2018辽宁沈阳第一次模拟)一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的()。A.14B.12C.2倍D.4倍【
7、答案】C题型一万有引力定律的理解与引力的计算1.万有引力的四个性质普遍性万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力相互性两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足大小相等、方向相反,作用在两个物体上宏观性在地面上的一般物体之间,由于质量比较小,物体间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间,或天体与其附近的物体之间,万有引力起着决定性作用特殊性两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,而与其所在空间的性质无关,也与周围是否存在其他物体无关2.万有引力的三种计算思路(1)用万有
8、引力定律计算质点间的万有引力公式F=Gm1m2r2适用于质点、均匀介质球体或球壳之间万有引力的计算。当两物体为匀质球体或球壳时,可以认为匀质球体或球壳的质量集中于球心,r为两球心的距离,引力的方向沿两球心连线的方向。(2)万有引力的两个推论推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即F引=0。推论2:在匀质球体内部距离球心r处的质点(质量为m)受到的万有引力等于球体内半径为r的同心球体(质量为M)对其的万有引力,即F=GMmr2。(3)非质点间万有引力的计算采用微元法和割补法微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。在使用微元法处理非质点
9、的万有引力问题时,需将非质点的物体分解为众多微小的“微元”,这样每个“微元”遵循万有引力公式F=Gm1m2r2,我们只需分析这些“微元”,再将“微元”用数学方法或物理思想进行必要的处理,进而使问题得到解决。割补法先将空腔填满,根据万有引力定律列式求解万有引力,该引力是填入部分的引力与剩余部分引力的合力。注意均匀球壳对内部的质点的万有引力的合力为零。【例1】如图甲所示,有一个质量为M,半径为R,密度均匀的大球体。设想把一质量为m的物体(可看成质点)放在该球体的中心位置,则此物体与球体间的万有引力为F1;然后从大球体中挖去一个半径为R2的小球体,再把质量为m的质点放在空腔中心,如图乙所示,则大球体
10、的剩余部分对该质点的万有引力大小为F2(已知质量分布均匀的球壳对壳内物体的引力为零)。则下列说法中正确的是()。甲乙A.F1等于无穷大,F2=GMm2R2B.F1=0,F2=GMmR2C.F1=0,F2=GMm2R2D.F1等于无穷大,F2=4GMmR2丙【解析】如图丙所示,将球体分成若干关于球心O对称的质量小块,其中每一小块均可视作质点。现取同一直径上关于O点对称的两个小块m1、m1, 它们对球心处物体的万有引力大小相等、方向相反,其合力为零。由此推广到球体中其他所有的质量小块。因此大球体与物体间存在着万有引力,但这些力的合力为零,所以F1等于零。若将挖去的部分补上,则可知剩余部分对质点的吸
11、引力等于整个完整的球体对质点的吸引力与挖去部分对质点的吸引力之差,而整个完整的球体对质点的吸引力为零,则剩余部分对质点的吸引力等于挖去部分对质点的吸引力。以O为圆心,作半径为R2的球,其质量为M8;整个球体对质点的吸引力可以等效为中间的半径为R2的球对质点的吸引力,根据万有引力定律可得此吸引力 F2=GM8mR22=GMm2R2;即大球体的剩余部分对该质点的万有引力大小F2=GMm2R2,综上所述,C项正确。【答案】C计算万有引力应注意的几点:(1)万有引力定律只适用于求质点间的万有引力。(2)在质量分布均匀的实心球中挖去小球后其质量分布不再均匀,不可再随意作为质点处理。(3)可以采用先填补后
12、运算的方法计算万有引力大小。【变式训练1】(2019四川成都质量检测)(多选)如图所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆轨道上,设地球质量为M,半径为R。下列说法正确的是()。A.地球对一颗卫星的引力大小为GMm(r-R)2B.一颗卫星对地球的引力大小为GMmr2C.两颗卫星之间的引力大小为Gm23r2D.三颗卫星对地球引力的合力大小为3GMmr2【解析】由万有引力定律知A项错误,B项正确;因三颗卫星连线构成等边三角形,圆轨道半径为r,由数学知识易知任意两颗卫星间距d=2rcos30=3r,由万有引力定律知C项正确;因三颗卫星对地球的引力大小相等且互成120,故三颗卫星对地
13、球引力的合力为零,D项错误。【答案】BC题型二中心天体质量和密度的估算中心天体质量和密度常用的估算方法使用方法已知量利用公式表达式备注中心天体质量的计算利用环绕天体r、TGMmr2=mr42T2M=42r3GT2只能得到中心天体的质量r、vGMmr2=mv2rM=rv2Gv、TGMmr2=mv2rGMmr2=mr42T2M=v3T2G利用天体表面重力加速度g、Rmg=GMmR2M=gR2G中心天体密度的计算利用环绕天体r、T、RGMmr2=mr42T2M=43R3一般情况下=3r3GT2R3当r=R时=3GT2利用近地卫星只需测出其运行周期利用天体表面重力加速度g、Rmg=GMmR2M=43R
14、3=3g4GR【例2】(多选)我国计划在2020年实现火星的着陆巡视,假设探测器飞抵火星着陆前,沿火星近表面做匀速圆周运动,运动的周期为T,线速度为v,已知引力常量为G,火星可视为质量均匀的球体,则下列说法正确的是()。A.火星的质量为42v3GT2B.火星的平均密度为3GT2C.火星表面的重力加速度大小为2vTD.探测器的向心加速度大小为2vT【解析】因探测器沿火星近表面做匀速圆周运动,故可认为轨道半径等于火星的半径,设探测器绕火星运行的轨道半径为r,根据v=2rT可得r=vT2,又GMmr2=mv2r,得M=v3T2G,A项错误;火星的平均密度=MV=v3T2G43r3=3GT2,B项正确
15、;火星表面的重力加速度大小g火=GMr2=Gv3T2Gr2=2vT,C项正确;探测器的向心加速度大小a=v2r=2vT,D项正确。【答案】BCD计算中心天体的质量、密度时的两点注意(1)天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径。卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径。卫星的轨道半径大于等于天体的半径。(2)自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间。自转周期与公转周期一般不相等。【变式训练2】(2018河北石家庄模拟考试)(多选)如图所示,飞行器P绕某星球做匀速圆周运动,星
16、球相对飞行器的张角为,下列说法正确的是()。A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度【解析】设星球质量为M,半径为R,飞行器绕星球转动的半径为r,周期为T,由GMmr2=m42T2r知T=2r3GM,r越大,T越大,A项正确;由GMmr2=mv2r知v=GMr,r越大,v越小,B项错误;由GMmr2=m42T2r和=M43R3得=3r3GT2R3,又Rr=sin2,所以=3GT2sin32,C项正确;知道周期和轨道半径能算出星球质量,因不知道星球半径,故无法求出密度,D项错误。【答案】AC题型三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 年高 物理 一轮 复习 第五 单元 万有引力定律 及其 应用 练习 解析 新人
链接地址:https://www.77wenku.com/p-107649.html