鲁京津琼专用2020版高考数学大一轮复习第十章计数原理10.2排列与组合教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第十章计数原理10.2排列与组合教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第十章计数原理10.2排列与组合教案含解析(11页珍藏版)》请在七七文库上搜索。
1、10.2排列与组合最新考纲1.通过实例,理解排列、组合的概念.2.能利用计数原理推导排列数公式、组合数公式1排列与组合的概念名称定义排列从n个不同元素中取出m(mn)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(mn)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A表示(2)组合数的定义:从n个不同元素中取出m(mn)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C表示3排列数、组合数的公式及性质公式(1)An(n1)(n2)(nm1)(2)C性质(3)0!1;An!(4)CC;CCC概念
2、方法微思考1排列问题和组合问题的区别是什么?提示元素之间与顺序有关的为排列,与顺序无关的为组合2排列数与组合数公式之间有何关系?它们公式都有两种形式,如何选择使用?提示(1)排列数与组合数之间的联系为CAA.(2)两种形式分别为:连乘积形式;阶乘形式前者多用于数字计算,后者多用于含有字母的排列数式子的变形与论证3解排列组合综合应用问题的思路有哪些?提示解排列组合综合应用题要从“分析”“分辨”“分类”“分步”的角度入手“分析”是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;“分辨”就是辨别是排列还是组合,对某些元素的位置有无限制等;“分类”就是对于较复杂的应用题中的元素往往分成互相排斥的
3、几类,然后逐类解决;“分步”就是把问题化成几个相互联系的步骤,而每一步都是简单的排列组合问题,然后逐步解决题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)所有元素完全相同的两个排列为相同排列()(2)一个组合中取出的元素讲究元素的先后顺序()(3)两个组合相同的充要条件是其中的元素完全相同()(4)(n1)!n!nn!.()(5)若组合式CC,则xm成立()(6)kCnC.()题组二教材改编26把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A144B120C72D24答案D解析“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为
4、A43224.3用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为()A8B24C48D120答案C解析末位数字排法有A种,其他位置排法有A种,共有AA48(种)排法,所以偶数的个数为48.题组三易错自纠4六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A192种B216种C240种D288种答案B解析第一类:甲在最左端,有A54321120(种)排法;第二类:乙在最左端,甲不在最右端,有4A4432196(种)排法所以共有12096216(种)排法5为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则
5、不同的选派方案种数为()A180B240C540D630答案C解析依题意,选派方案分为三类:一个国家派4名,另两个国家各派1名,有A90(种);一个国家派3名,一个国家派2名,一个国家派1名,有CCCA360(种);每个国家各派2名,有A90(种),故不同的选派方案种数为9036090540.6寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有_种(用数字作答)答案45解析设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自
6、己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9545(种)题型一排列问题1用1,2,3,4,5这五个数字,可以组成比20000大,并且百位数不是数字3的没有重复数字的五位数,共有()A96个B78个C72个D64个答案B解析根据题意知,要求这个五位数比20000大,则首位必须是2,3,4,5这4个数字中的一个,当首位是3时,百位数不是数字3,符合要求的五位数有A24(个);当首位是2,4,5时,由于百位数不能是数字3,则符合要求的五位数有3(AA)54(
7、个),因此共有542478(个)这样的五位数符合要求故选B.2某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_条毕业留言(用数字作答)答案1560解析由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A40391560(条)留言36名同学站成1排照相,要求同学甲既不站在最左边又不站在最右边,共有_种不同站法答案480解析方法一(位置优先法)先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有A种站法;第2步,余下4人(含甲)站在剩下的4个位置上,有A种站法由分
8、步乘法计数原理可知,共有AA480(种)不同的站法方法二(元素优先法)先安排甲的位置(既不站在最左边又不站在最右边),再安排其他5人的位置,分为两步:第1步,将甲排在除最左边、最右边外的任意位置上,有A种站法;第2步,余下5人站在剩下的5个位置上,有A种站法由分步乘法计数原理可知,共有AA480(种)不同的站法思维升华排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是
9、解决有限制条件的排列问题的常用方法题型二组合问题例1男运动员6名,女运动员4名,其中男、女队长各1名现选派5人外出参加比赛,在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员解(1)分两步完成:第一步,选3名男运动员,有C种选法;第二步,选2名女运动员,有C种选法由分步乘法计数原理可得,共有CC120(种)选法(2)方法一“至少有1名女运动员”包括以下四种情况:1女4男,2女3男,3女2男,4女1男由分类加法计数原理可得总选法共有CCCCCCCC246(种)方法二“至少有1名女运动员”的反面为
10、“全是男运动员”,可用间接法求解从10人中任选5人有C种选法,其中全是男运动员的选法有C种所以“至少有1名女运动员”的选法有CC246(种)(3)方法一(直接法)可分类求解:“只有男队长”的选法种数为C;“只有女队长”的选法种数为C;“男、女队长都入选”的选法种数为C,所以共有2CC196(种)选法方法二(间接法)从10人中任选5人有C种选法,其中不选队长的方法有C种所以“至少有1名队长”的选法有CC196(种)(4)当有女队长时,其他人任意选,共有C种选法;当不选女队长时,必选男队长,共有C种选法,其中不含女运动员的选法有C种,所以不选女队长时的选法共有(CC)种所以既要有队长又要有女运动员
11、的选法共有CCC191(种)思维升华组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理跟踪训练1某市工商局对35种商品进行抽样检查,已知其中有15种假货现从35种商品中选取3种(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(
12、3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?解(1)从余下的34种商品中,选取2种有C561种取法,某一种假货必须在内的不同取法有561种(2)从34种可选商品中,选取3种,有C种或者CCC5984种取法某一种假货不能在内的不同取法有5984种(3)从20种真货中选取1种,从15种假货中选取2种有CC2100种取法恰有2种假货在内的不同的取法有2100种(4)选取2种假货有CC种,选取3种假货有C种,共有选取方式CCC21004552555(种)至少有2种假货在内的不同的取法有2555种(5)方法一(间接
13、法)选取3种的总数为C,因此共有选取方式CC65454556090(种)至多有2种假货在内的不同的取法有6090种方法二(直接法)选取3种真货有C种,选取2种真货有CC种,选取1种真货有CC种,因此共有选取方式CCCCC6090(种)至多有2种假货在内的不同的取法有6090种题型三排列与组合的综合问题命题点1相邻问题例23名男生、3名女生排成一排,男生必须相邻,女生也必须相邻的排法种数为()A2B9C72D36答案C解析可分两步完成:第一步,把3名女生作为一个整体,看成一个元素,3名男生作为一个整体,看成一个元素,两个元素排成一排有A种排法;第二步,3名女生排在一起有A种排法,3名男生排在一起
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第十 计数 原理 10
链接地址:https://www.77wenku.com/p-107848.html