鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.3平面向量的数量积教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.3平面向量的数量积教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第五章平面向量与复数5.3平面向量的数量积教案含解析(17页珍藏版)》请在七七文库上搜索。
1、5.3平面向量的数量积最新考纲1.通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义.2.体会平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系1向量的夹角已知两个非零向量a和b,作a,b,则AOB就是向量a与b的夹角,向量夹角的范围是0,2平面向量的数量积定义设两个非零向量a,b的夹角为,则数量|a|b|cos叫做a与b的数量积,记作ab投影|a|cos叫做向量a在b方向上的投影,|b|cos叫做向量b在a方向上的投影几何意义数量积ab等于a的长度|a|与b在a的方向上的
2、投影|b|cos的乘积3.向量数量积的运算律(1)abba.(2)(a)b(ab)a(b)(3)(ab)cacbc.4平面向量数量积的有关结论已知非零向量a(x1,y1),b(x2,y2),a与b的夹角为.结论几何表示坐标表示模|a|a|夹角coscosab的充要条件ab0x1x2y1y20|ab|与|a|b|的关系|ab|a|b|x1x2y1y2|概念方法微思考1a在b方向上的投影与b在a方向上的投影相同吗?提示不相同因为a在b方向上的投影为|a|cos,而b在a方向上的投影为|b|cos,其中为a与b的夹角2两个向量的数量积大于0,则夹角一定为锐角吗?提示不一定当夹角为0时,数量积也大于0
3、.题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)向量在另一个向量方向上的投影为数量,而不是向量()(2)两个向量的数量积是一个实数,向量的加、减、数乘运算的运算结果是向量()(3)由ab0可得a0或b0.()(4)(ab)ca(bc)()(5)两个向量的夹角的范围是.()(6)若ab0,|ab|2cosx.(2)f(x)cos2x2cosx2cos2x2cosx122.x,cosx1,当cosx时,f(x)取得最小值;当cosx1时,f(x)取得最大值1.思维升华平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等
4、式成立等,得到三角函数的关系式,然后求解(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等跟踪训练2在平面直角坐标系xOy中,已知向量m,n(sinx,cosx),x.(1)若mn,求tanx的值;(2)若m与n的夹角为,求x的值解(1)因为m,n(sinx,cosx),mn.所以mn0,即sinxcosx0,所以sinxcosx,所以tanx1.(2)因为|m|n|1,所以mncos,即sinxcosx,所以sin,因为0x,所以x0”是“a与b的夹角为锐角”的()A充分不必要条件B必要不充分条件C
5、充要条件D既不充分也不必要条件答案B解析根据向量数量积的定义式可知,若ab0,则a与b的夹角为锐角或零角,若a与b的夹角为锐角,则一定有ab0,所以“ab0”是“a与b的夹角为锐角”的必要不充分条件,故选B.2(2019西北师大附中冲刺诊断)已知向量a(1,1),b(2,3),若ka2b与a垂直,则实数k的值为()A1B1C2D2答案B解析向量a(1,1),b(2,3),则ka2b.若ka2b与a垂直,则k4k60,解得k1.故选B.3(2018华中师大一附中模拟)已知向量a,b满足|a|1,|b|2,ab(,),则|2ab|等于()A2B.C.D2答案A解析根据题意,|ab|,则(ab)2a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第五 平面 向量 复数
链接地址:https://www.77wenku.com/p-107852.html