鲁京津琼专用2020版高考数学大一轮复习第三章导数及其应用3.2导数的应用第2课时教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第三章导数及其应用3.2导数的应用第2课时教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第三章导数及其应用3.2导数的应用第2课时教案含解析(13页珍藏版)》请在七七文库上搜索。
1、第2课时导数与函数的极值、最值题型一用导数求解函数极值问题命题点1根据函数图象判断极值例1设函数f(x)在R上可导,其导函数为f(x),且函数y(1x)f(x)的图象如图所示,则下列结论中一定成立的是()A函数f(x)有极大值f(2)和极小值f(1)B函数f(x)有极大值f(2)和极小值f(1)C函数f(x)有极大值f(2)和极小值f(2)D函数f(x)有极大值f(2)和极小值f(2)答案D解析由题图可知,当x0;当2x1时,f(x)0;当1x2时,f(x)2时,f(x)0.由此可以得到函数f(x)在x2处取得极大值,在x2处取得极小值命题点2求已知函数的极值例2(2018泉州质检)已知函数f
2、(x)x1(aR,e为自然对数的底数),求函数f(x)的极值解f(x)1,当a0时,f(x)0,f(x)为(,)上的增函数,所以函数f(x)无极值当a0时,令f(x)0,得exa,即xlna,当x(,lna)时,f(x)0,所以f(x)在(,lna)上单调递减,在(lna,)上单调递增,故f(x)在xlna处取得极小值且极小值为f(lna)lna,无极大值综上,当a0时,函数f(x)无极值;当a0时,f(x)在xlna处取得极小值lna,无极大值命题点3根据极值(点)求参数例3若函数f(x)x2x1在区间上有极值点,则实数a的取值范围是()A.B.C.D.答案D解析因为f(x)x2x1,所以f
3、(x)x2ax1.函数f(x)x2x1在区间上有极值点,可化为x2ax10在区间上有解,即ax在区间上有解,设t(x)x,则t(x)1,令t(x)0,得1x4,令t(x)0,得x0,解得x1;由f(x)0,解得x0,得0x1,由f(x)1,f(x)1lnx在(0,1)上单调递增,在(1,)上单调递减(2)由(1)得f(x)在上单调递增,在1,e上单调递减,f(x)在上的最大值为f(1)1ln10.又f1eln2e,f(e)1lne,且ff(e),f(x)在上的最小值为f2e.f(x)在上的最大值为0,最小值为2e.思维升华 (1)若函数在区间a,b上单调递增或递减,f(a)与f(b)一个为最大
4、值,一个为最小值;(2)若函数在闭区间a,b内有极值,要先求出a,b上的极值,与f(a),f(b)比较,最大的是最大值,最小的是最小值,可列表完成;(3)函数f(x)在区间(a,b)上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到跟踪训练2(2017北京)已知函数f(x)excosxx.(1)求曲线yf(x)在点(0,f(0)处的切线方程;(2)求函数f(x)在区间上的最大值和最小值解(1)因为f(x)excosxx,所以f(x)ex(cosxsinx)1,f(0)0.又因为f(0)1,所以曲线yf(x)在点(0,f(0)处的切线方程为y1.(2)设h(x
5、)ex(cosxsinx)1,则h(x)ex(cosxsinxsinxcosx)2exsinx.当x时,h(x)0,所以h(x)在区间上单调递减,所以对任意x有h(x)h(0)0,即f(x)0)的导函数yf(x)的两个零点为3和0.(1)求f(x)的单调区间;(2)若f(x)的极小值为e3,求f(x)在区间5,)上的最大值解(1)f(x).令g(x)ax2(2ab)xbc,因为ex0,所以yf(x)的零点就是g(x)ax2(2ab)xbc的零点且f(x)与g(x)符号相同又因为a0,所以当3x0,即f(x)0,当x0时,g(x)0,即f(x)5f(0),所以函数f(x)在区间5,)上的最大值是
6、5e5.思维升华 (1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小(2)求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值跟踪训练3已知函数f(x)ax32x24x5,当x时,函数f(x)有极值,则函数f(x)在3,1上的最大值为_答案13解析f(x)3ax24x4,由f0可得a1,经验证f为极值;f(x)x32x24x5,f(x)3x24x4.令f(x)0,解得x2或x.当x变化时,f(x),f(x)的取值及变化情况如表所示:x3(3,2)21f(x)00f(x)8134函数f
7、(x)在3,1上的最大值为13.利用导数求函数的最值例(12分)已知函数f(x)lnxax(aR)(1)求函数f(x)的单调区间;(2)当a0时,求函数f(x)在1,2上的最小值规范解答解(1)f(x)a(x0),当a0时,f(x)a0,即函数f(x)的单调递增区间为(0,)2分当a0时,令f(x)a0,可得x,当0x0;当x时,f(x)0时,函数f(x)的单调递增区间为,单调递减区间为.5分(2)当1,即a1时,函数f(x)在1,2上是减函数,所以f(x)的最小值是f(2)ln22a.6分当2,即0a时,函数f(x)在1,2上是增函数,所以f(x)的最小值是f(1)a.7分当12,即a1时,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第三 导数 及其 应用
链接地址:https://www.77wenku.com/p-107876.html