鲁京津琼专用2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第十二章概率随机变量及其分布高考专题突破六高考中的概率与统计问题教案含解析(13页珍藏版)》请在七七文库上搜索。
1、高考专题突破六高考中的概率与统计问题题型一离散型随机变量的均值与方差例1某品牌汽车4S店,对最近100位采用分期付款的购车者进行统计,统计结果如下表所示已知分9期付款的频率为0.2.4S店经销一辆该品牌的汽车,顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为1.5万元;分12期或15期付款,其利润为2万元用表示经销一辆汽车的利润.付款方式分3期分6期分9期分12期分15期频数4020a10b(1)求上表中的a,b值;(2)若以频率作为概率,求事件A“购买该品牌汽车的3位顾客中,至多有1位采用分9期付款”的概率P(A);(3)求的分布列及均值E()解(1)由0.2,得a20.又4020
2、a10b100,所以b10.(2)记分期付款的期数为,的可能取值是3,6,9,12,15.依题意,得P(3)0.4,P(6)0.2,P(9)0.2,P(12)0.1,P(15)0.1.则“购买该品牌汽车的3位顾客中,至多有1位分9期付款”的概率为P(A)0.83C0.2(10.2)20.896.(3)由题意,可知只能取3,6,9,12,15.而3时,1;6时,1.5;9时,1.5;12时,2;15时,2.所以的可能取值为1,1.5,2,且P(1)P(3)0.4,P(1.5)P(6)P(9)0.4,P(2)P(12)P(15)0.10.10.2.故的分布列为11.52P0.40.40.2所以的均
3、值E()10.41.50.420.21.4.思维升华离散型随机变量的均值和方差的求解,一般分两步:一是定型,即先判断随机变量的分布是特殊类型,还是一般类型,如两点分布、二项分布、超几何分布等属于特殊类型;二是定性,对于特殊类型的均值和方差可以直接代入相应公式求解,而对于一般类型的随机变量,应先求其分布列然后代入相应公式计算,注意离散型随机变量的取值与概率的对应跟踪训练1某项大型赛事,需要从高校选拔青年志愿者,某大学生实践中心积极参与,从8名学生会干部(其中男生5名,女生3名)中选3名参加志愿者服务活动若所选3名学生中的女生人数为X,求X的分布列及均值解因为8名学生会干部中有5名男生,3名女生,
4、所以X的分布列服从参数N8,M3,n3的超几何分布X的所有可能取值为0,1,2,3,其中P(Xi)(i0,1,2,3),则P(X0),P(X1),P(X2),P(X3).所以X的分布列为X0123P所以X的均值为E(X)0123.题型二概率与统计的综合应用例2(2016全国)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元在机器使用期间,如果备件不足再购买,则每个500元现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损
5、零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数(1)求X的分布列;(2)若要求P(Xn)0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n19与n20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,X的可能取值为16,17,18,19,20,21,22,从而P(X16)0.20.20.04;P(X17)20.20.40.16;P(X18)20.20.20.40.40.2
6、4;P(X19)20.20.220.40.20.24;P(X20)20.20.40.20.20.2;P(X21)20.20.20.08;P(X22)0.20.20.04;所以X的分布列为X16171819202122P0.040.160.240.240.20.080.04(2)由(1)知P(X18)0.44,P(X19)0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元)当n19时,E(Y)192000.68(19200500)0.2(192002500)0.08(192003500)0.044040(元)当n20时,E(Y)202000.88(20200
7、500)0.08(202002500)0.044 080(元)可知当n19时所需费用的期望值小于n20时所需费用的期望值,故应选n19.思维升华概率与统计作为考查考生应用意识的重要载体,已成为近几年高考的一大亮点和热点它与其他知识融合、渗透,情境新颖,充分体现了概率与统计的工具性和交汇性跟踪训练2经销商经销某种农产品,在一个销售季度内,每售出1t该产品获得利润500元,未售出的产品,每1t亏损300元根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示经销商为下一个销售季度购进了130t该农产品以X(单位:t,100X150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一
8、个销售季度内经销该农产品的利润(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57000元的概率;(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X100,110),则取X105,且X105的概率等于需求量落入100,110)的频率),求T的均值解(1)当X100,130)时,T500X300(130X)800X39000.当X130,150时,T50013065000.所以T(2)由(1)知利润T不少于57000元当且仅当120X150.由直方图知需求量X120,150的频率为0.7,所以下一个销
9、售季度内的利润T不少于57000元的概率的估计值为0.7.(3)依题意可得T的分布列为T45000530006100065000P0.10.20.30.4所以E(T)450000.1530000.2610000.3650000.459400.题型三概率与统计案例的综合应用例3高铁、网购、移动支付和共享单车被誉为中国的“新四大发明”,彰显出中国式创新的强劲活力某移动支付公司从我市移动支付用户中随机抽取100名进行调查,得到如下数据:每周移动支付次数1次2次3次4次5次6次及以上总计男1087321545女546463055总计1512137845100(1)把每周使用移动支付超过3次的用户称为“
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第十二 概率 随机变量 及其 分布 专题 突破 中的 统计 问题 教案 解析
链接地址:https://www.77wenku.com/p-107880.html