鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.3圆的方程教案含解析(16页珍藏版)》请在七七文库上搜索。
1、9.3圆的方程最新考纲回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程圆的定义与方程定义平面内到定点的距离等于定长的点的轨迹叫做圆方程标准式(xa)2(yb)2r2(r0)圆心为(a,b)半径为r一般式x2y2DxEyF0充要条件:D2E24F0圆心坐标:半径r概念方法微思考1二元二次方程Ax2BxyCy2DxEyF0表示圆的条件是什么?提示2已知C:x2y2DxEyF0,则“EF0且D0”是“C与y轴相切于原点”的什么条件?提示由题意可知,C与y轴相切于原点时,圆心坐标为,而D可以大于0,所以“EF0且Dr2;(3)点在圆内:(x0a)2(y0b)20.()(5)方
2、程(xa)2(yb)2t2(tR)表示圆心为(a,b),半径为t的圆()题组二教材改编2圆心为(1,1)且过原点的圆的方程是()A(x1)2(y1)21B(x1)2(y1)21C(x1)2(y1)22D(x1)2(y1)22答案D解析因为圆心为(1,1)且过原点,所以该圆的半径r,则该圆的方程为(x1)2(y1)22.3以点(3,1)为圆心,并且与直线3x4y0相切的圆的方程是()A(x3)2(y1)21B(x3)2(y1)21C(x3)2(y1)21D(x3)2(y1)21答案A4圆C的圆心在x轴上,并且过点A(1,1)和B(1,3),则圆C的方程为_答案(x2)2y210解析设圆心坐标为C
3、(a,0),点A(1,1)和B(1,3)在圆C上,|CA|CB|,即,解得a2,圆心为C(2,0),半径|CA|,圆C的方程为(x2)2y210.题组三易错自纠5若方程x2y2mx2y30表示圆,则m的取值范围是()A(,)(,)B(,2)(2,)C(,)(,)D(,2)(2,)答案B解析将x2y2mx2y30化为圆的标准方程得2(y1)22.由其表示圆可得20,解得m2.6若点(1,1)在圆(xa)2(ya)24的内部,则实数a的取值范围是()A1a1B0a1或a1Da4答案A解析点(1,1)在圆内,(1a)2(a1)24,即1a0),又圆与直线4x3y0相切,1,解得a2或a(舍去)圆的标
4、准方程为(x2)2(y1)21.故选A.题型一圆的方程例1(1)已知圆E经过三点A(0,1),B(2,0),C(0,1),且圆心在x轴的正半轴上,则圆E的标准方程为()A.2y2B.2y2C.2y2D.2y2答案C解析方法一(待定系数法)根据题意,设圆E的圆心坐标为(a,0)(a0),半径为r,则圆E的标准方程为(xa)2y2r2(a0)由题意得解得所以圆E的标准方程为2y2.方法二(待定系数法)设圆E的一般方程为x2y2DxEyF0(D2E24F0),则由题意得解得所以圆E的一般方程为x2y2x10,即2y2.方法三(几何法)因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB
5、的垂直平分线y2(x1)上又圆E的圆心在x轴的正半轴上,所以圆E的圆心坐标为.则圆E的半径为|EB|,所以圆E的标准方程为2y2.(2)(2018安徽“江南十校”联考)已知圆C的圆心在直线xy0上,圆C与直线xy0相切,且在直线xy30上截得的弦长为,则圆C的方程为_答案(x1)2(y1)22解析方法一所求圆的圆心在直线xy0上,设所求圆的圆心为(a,a)又所求圆与直线xy0相切,半径r|a|.又所求圆在直线xy30上截得的弦长为,圆心(a,a)到直线xy30的距离d,d22r2,即2a2,解得a1,圆C的方程为(x1)2(y1)22.方法二设所求圆的方程为(xa)2(yb)2r2(r0),则
6、圆心(a,b)到直线xy30的距离d,r2,即2r2(ab3)23.由于所求圆与直线xy0相切,(ab)22r2.又圆心在直线xy0上,ab0.联立,解得故圆C的方程为(x1)2(y1)22.方法三设所求圆的方程为x2y2DxEyF0,则圆心为,半径r,圆心在直线xy0上,0,即DE0,又圆C与直线xy0相切,即(DE)22(D2E24F),D2E22DE8F0.又知圆心到直线xy30的距离d,由已知得d22r2,(DE6)2122(D2E24F),联立,解得故所求圆的方程为x2y22x2y0,即(x1)2(y1)22.思维升华(1)直接法:直接求出圆心坐标和半径,写出方程(2)待定系数法若已
7、知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值跟踪训练1一个圆与y轴相切,圆心在直线x3y0上,且在直线yx上截得的弦长为2,则该圆的方程为_答案x2y26x2y10或x2y26x2y10解析方法一所求圆的圆心在直线x3y0上,设所求圆的圆心为(3a,a),又所求圆与y轴相切,半径r3|a|,又所求圆在直线yx上截得的弦长为2,圆心(3a,a)到直线yx的距离d,d2()2r2,即2a279a2,a1.故所求圆的方程为(x3)2(y1)29或(x3)2(y1)29,即x2y26x2y10
8、或x2y26x2y10.方法二设所求圆的方程为(xa)2(yb)2r2,则圆心(a,b)到直线yx的距离为,r27,即2r2(ab)214.由于所求圆与y轴相切,r2a2,又所求圆的圆心在直线x3y0上,a3b0,联立,解得或故所求圆的方程为(x3)2(y1)29或(x3)2(y1)29,即x2y26x2y10或x2y26x2y10.方法三设所求圆的方程为x2y2DxEyF0,则圆心坐标为,半径r.在圆的方程中,令x0,得y2EyF0.由于所求圆与y轴相切,0,则E24F.圆心到直线yx的距离为d,由已知得d2()2r2,即(DE)2562(D2E24F)又圆心在直线x3y0上,D3E0.联立
9、,解得或故所求圆的方程为x2y26x2y10或x2y26x2y10.题型二与圆有关的轨迹问题例2已知RtABC的斜边为AB,且A(1,0),B(3,0)求:(1)直角顶点C的轨迹方程;(2)直角边BC的中点M的轨迹方程解(1)方法一设C(x,y),因为A,B,C三点不共线,所以y0.因为ACBC,且BC,AC斜率均存在,所以kACkBC1,又kAC,kBC,所以1,化简得x2y22x30.因此,直角顶点C的轨迹方程为x2y22x30(y0)方法二设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|AB|2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(
10、由于A,B,C三点不共线,所以应除去与x轴的交点)所以直角顶点C的轨迹方程为(x1)2y24(y0)(2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x,y,所以x02x3,y02y.由(1)知,点C的轨迹方程为(x1)2y24(y0),将x02x3,y02y代入得(2x4)2(2y)24,即(x2)2y21.因此动点M的轨迹方程为(x2)2y21(y0)思维升华求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法:直接根据题目提供的条件列出方程定义法:根据圆、直线等定义列方程几何法:利用圆的几何性质列方程相关点代入法:找到要求点与已知点
11、的关系,代入已知点满足的关系式跟踪训练2设定点M(3,4),动点N在圆x2y24上运动,以OM,ON为两边作平行四边形MONP,求点P的轨迹解如图,设P(x,y),N(x0,y0),则线段OP的中点坐标为,线段MN的中点坐标为.因为平行四边形的对角线互相平分,所以,整理得又点N(x0,y0)在圆x2y24上,所以(x3)2(y4)24.所以点P的轨迹是以(3,4)为圆心,2为半径的圆,直线OM与轨迹相交于两点和,不符合题意,舍去,所以点P的轨迹为圆(x3)2(y4)24,除去两点和.题型三与圆有关的最值问题例3已知点(x,y)在圆(x2)2(y3)21上,求xy的最大值和最小值解设txy,则y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何
链接地址:https://www.77wenku.com/p-107891.html