鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.6双曲线教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.6双曲线教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.6双曲线教案含解析(18页珍藏版)》请在七七文库上搜索。
1、9.6双曲线最新考纲了解双曲线的定义、几何图形和标准方程,知道其简单几何性质1双曲线定义平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距集合PM|MF1|MF2|2a,|F1F2|2c,其中a,c为常数且a0,c0.(1)当2a|F1F2|时,P点不存在2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴对称中心:原点顶点A1(a,0),A2(a,0)A1(0,a),A2(0,a)渐近线yxyx离心率e,e(1,)
2、,其中c实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a,线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a,b,c的关系c2a2b2 (ca0,cb0)概念方法微思考1平面内与两定点F1,F2的距离之差的绝对值等于常数2a的动点的轨迹一定为双曲线吗?为什么?提示不一定当2a|F1F2|时,动点的轨迹是两条射线;当2a|F1F2|时,动点的轨迹不存在;当2a0时,动点的轨迹是线段F1F2的中垂线2方程Ax2By21表示双曲线的充要条件是什么?提示若A0,B0,表示焦点在x轴上的双曲线;若A0,表示焦点在y轴上的双曲线所以Ax2By2
3、1表示双曲线的充要条件是AB0,b0,二者没有大小要求,若ab0,ab0,0ab0时,1e0时,e(亦称等轴双曲线),当0a.题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)平面内到点F1(0,4),F2(0,4)距离之差的绝对值等于8的点的轨迹是双曲线()(2)方程1(mn0)表示焦点在x轴上的双曲线()(3)双曲线方程(m0,n0,0)的渐近线方程是0,即0.()(4)等轴双曲线的渐近线互相垂直,离心率等于.()(5)若双曲线1(a0,b0)与1(a0,b0)的离心率分别是e1,e2,则1(此条件中两条双曲线称为共轭双曲线)()题组二教材改编2若双曲线1(a0,b0)的
4、焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A.B5C.D2答案A解析由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为0,即bxay0,2ab.又a2b2c2,5a2c2.e25,e.3已知ab0,椭圆C1的方程为1,双曲线C2的方程为1,C1与C2的离心率之积为,则C2的渐近线方程为()Axy0B.xy0Cx2y0D2xy0答案A解析椭圆C1的离心率为,双曲线C2的离心率为,所以,即a44b4,所以ab,所以双曲线C2的渐近线方程是yx,即xy0.4经过点A(4,1),且对称轴都在坐标轴上的等轴双曲线方程为_答案1解析设双曲线的方程为1(a0),把点A(4,1)代入,
5、得a215(舍负),故所求方程为1.题组三易错自纠5(2016全国)已知方程1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A(1,3) B(1,)C(0,3) D(0,)答案A解析方程1表示双曲线,(m2n)(3m2n)0,解得m2n3m2,由双曲线性质,知c2(m2n)(3m2n)4m2(其中c是半焦距),焦距2c22|m|4,解得|m|1,1n0,b0)的一条渐近线经过点(3,4),则此双曲线的离心率为()A.B.C.D.答案D解析由条件知yx过点(3,4),4,即3b4a,9b216a2,9c29a216a2,25a29c2,e.故选D.7已知双曲线过点(4,),且渐近
6、线方程为yx,则该双曲线的标准方程为_答案y21解析由双曲线的渐近线方程为yx,可设该双曲线的标准方程为y2(0),已知该双曲线过点(4,),所以()2,即1,故所求双曲线的标准方程为y21.题型一双曲线的定义例1(1)已知定点F1(2,0),F2(2,0),N是圆O:x2y21上任意一点,点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,则点P的轨迹是()A椭圆B双曲线C抛物线D圆答案B解析如图,连接ON,由题意可得|ON|1,且N为MF1的中点,又O为F1F2的中点,|MF2|2.点F1关于点N的对称点为M,线段F1M的中垂线与直线F2M相交于点P,由垂直平分线的性质可
7、得|PM|PF1|,|PF2|PF1|PF2|PM|MF2|2|F1F2|,由双曲线的定义可得,点P的轨迹是以F1,F2为焦点的双曲线(2)已知F1,F2为双曲线C:x2y22的左、右焦点,点P在C上,|PF1|2|PF2|,则cosF1PF2_.答案解析由双曲线的定义有|PF1|PF2|PF2|2a2,|PF1|2|PF2|4,则cosF1PF2.引申探究1本例(2)中,若将条件“|PF1|2|PF2|”改为“F1PF260”,则F1PF2的面积是多少?解不妨设点P在双曲线的右支上,则|PF1|PF2|2a2,在F1PF2中,由余弦定理,得cosF1PF2,|PF1|PF2|8,|PF1|P
8、F2|sin602.2本例(2)中,若将条件“|PF1|2|PF2|”改为“0”,则F1PF2的面积是多少?解不妨设点P在双曲线的右支上,则|PF1|PF2|2a2,0,在F1PF2中,有|PF1|2|PF2|2|F1F2|2,即|PF1|2|PF2|216,|PF1|PF2|4,|PF1|PF2|2.思维升华 (1)利用双曲线的定义判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出双曲线方程(2)在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合|PF1|PF2|2a,运用平方的方法,建立与|PF1|PF2|的联系跟踪训练1设双曲线x21的左、右焦点分别为F1,F2,若点P在双
9、曲线上,且F1PF2为锐角三角形,则|PF1|PF2|的取值范围是_答案(2,8)解析如图,由已知可得a1,b,c2,从而|F1F2|4,由对称性不妨设P在右支上,设|PF2|m,则|PF1|m2am2,由于PF1F2为锐角三角形,结合实际意义需满足解得1m3,又|PF1|PF2|2m2,22m20,b0)由题意知,2b12,e,b6,c10,a8.双曲线的标准方程为1或1.双曲线经过点M(0,12),M(0,12)为双曲线的一个顶点,故焦点在y轴上,且a12.又2c26,c13,b2c2a225.双曲线的标准方程为1.设双曲线方程为mx2ny21(mn0)解得双曲线的标准方程为1.思维升华求
10、双曲线标准方程的方法(1)定义法(2)待定系数法焦点位置不确定时,设Ax2By21(AB0);与1共渐近线的设为(0);与1共焦点的设为1(b2k0,b0)的虚轴长为8,右顶点(a,0)到双曲线的一条渐近线的距离为,则双曲线C的方程为()A.1B.1C.1D.1答案A解析由虚轴长为8,可得b4,右顶点A(a,0)到双曲线C的一条渐近线bxay0的距离为,解得a3,则双曲线C的方程为1,故选A. (2)(2017全国)已知双曲线C:1(a0,b0)的一条渐近线方程为yx,且与椭圆1有公共焦点,则C的方程为()A.1B.1C.1D.1答案B解析由yx,可得.由椭圆1的焦点为(3,0),(3,0),
11、可得a2b29.由可得a24,b25.所以C的方程为1.故选B.题型三双曲线的几何性质命题点1与渐近线有关的问题例3已知F1,F2是双曲线C:1(a0,b0)的两个焦点,P是C上一点,若|PF1|PF2|6a,且PF1F2最小内角的大小为30,则双曲线C的渐近线方程是()A.xy0Bxy0Cx2y0D2xy0答案A解析由题意,不妨设|PF1|PF2|,则根据双曲线的定义得,|PF1|PF2|2a,又|PF1|PF2|6a,解得|PF1|4a,|PF2|2a.在PF1F2中,|F1F2|2c,而ca,所以有|PF2|0,双曲线的渐近线与圆(x2)2y21相切,则双曲线的离心率为()A.B.C.D
12、.答案A解析根据题意,可以求得双曲线的渐近线的方程为xay0,而圆(x2)2y21的圆心为(2,0),半径为1,结合题意有1,结合a0的条件,求得a,所以c2,所以有e,故选A.思维升华1.求双曲线的渐近线的方法求双曲线1(a0,b0)或1(a0,b0)的渐近线方程的方法是令右边的常数等于0,即令0,得yx;或令0,得yx.反之,已知渐近线方程为yx,可设双曲线方程为(a0,b0,0)2求双曲线的离心率(1)求双曲线的离心率或其范围的方法求a,b,c的值,由1直接求e.列出含有a,b,c的齐次方程(或不等式),借助于b2c2a2消去b,然后转化成关于e的方程(或不等式)求解(2)双曲线的渐近线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何
链接地址:https://www.77wenku.com/p-107894.html