鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.5椭圆第1课时教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.5椭圆第1课时教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何9.5椭圆第1课时教案含解析(19页珍藏版)》请在七七文库上搜索。
1、9.5椭圆最新考纲1.了解椭圆的实际背景,感受椭圆在刻画现实世界和解决实际问题中的作用.2.经历从具体情境中抽象出椭圆模型的过程,掌握椭圆的定义、标准方程及简单几何性质1椭圆的概念平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距集合PM|MF1|MF2|2a,|F1F2|2c,其中a0,c0,且a,c为常数:(1)若ac,则集合P为椭圆;(2)若ac,则集合P为线段;(3)若ab0)1(ab0)图形性质范围axabybbxbaya对称性对称轴:坐标轴对称中心:原点顶点坐标A1(a,0),A2(a,0)B1(
2、0,b),B2(0,b)A1(0,a),A2(0,a)B1(b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b焦距|F1F2|2c离心率e(0,1)a,b,c的关系a2b2c2概念方法微思考1在椭圆的定义中,若2a|F1F2|或2a|F1F2|,动点P的轨迹如何?提示当2a|F1F2|时动点P的轨迹是线段F1F2;当2a|F1F2|时动点P的轨迹是不存在的2椭圆的离心率的大小与椭圆的扁平程度有怎样的关系?提示由e知,当a不变时,e越大,b越小,椭圆越扁;e越小,b越大,椭圆越圆3点和椭圆的位置关系有几种?如何判断提示点P(x0,y0)和椭圆的位置关系有3种(1)点P(x0
3、,y0)在椭圆内1.4直线与椭圆的位置关系有几种?如何判断?提示直线与椭圆的位置关系有三种:相离、相切、相交判断方法为联立直线与椭圆方程,求联立后所得方程的判别式.(1)直线与椭圆相离0.题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)椭圆上一点P与两焦点F1,F2构成PF1F2的周长为2a2c(其中a为椭圆的长半轴长,c为椭圆的半焦距)()(2)方程mx2ny21(m0,n0,mn)表示的曲线是椭圆()(3)1(ab)表示焦点在y轴上的椭圆()(4)1(ab0)与1(ab0)的焦距相等()题组二教材改编2椭圆1的焦距为4,则m等于()A4B8C4或8D12答案C解析当焦点
4、在x轴上时,10mm20,10m(m2)4,m4.当焦点在y轴上时,m210m0,m2(10m)4,m8.m4或8.3过点A(3,2)且与椭圆1有相同焦点的椭圆的方程为()A.1B.1C.1D.1答案A解析由题意知c25,可设椭圆方程为1(0),则1,解得10或2(舍去),所求椭圆的方程为1.4已知点P是椭圆1上y轴右侧的一点,且以点P及焦点F1,F2为顶点的三角形的面积等于1,则点P的坐标为_答案或解析设P(x,y),由题意知c2a2b2541,所以c1,则F1(1,0),F2(1,0)由题意可得点P到x轴的距离为1,所以y1,把y1代入1,得x,又x0,所以x,所以P点坐标为或.题组三易错
5、自纠5若方程1表示椭圆,则m的取值范围是()A(3,5) B(5,3)C(3,1)(1,5) D(5,1)(1,3)答案C解析由方程表示椭圆知解得3mb0)的左、右焦点分别为F1,F2,离心率为,过F2的直线l交C于A,B两点,若AF1B的周长为4,则C的方程为()A.1B.y21C.1D.1答案A解析AF1B的周长为4,4a4,a,离心率为,c1,b,椭圆C的方程为1.故选A.第1课时椭圆及其性质题型一椭圆的定义及应用1.如图所示,一圆形纸片的圆心为O,F是圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,则点P的轨迹是()A椭圆B双曲线C
6、抛物线D圆答案A解析由条件知|PM|PF|,|PO|PF|PO|PM|OM|R|OF|.P点的轨迹是以O,F为焦点的椭圆2已知ABC的顶点B,C在椭圆y21上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则ABC的周长是()A2B6C4D12答案C解析由椭圆的方程得a.设椭圆的另一个焦点为F,则由椭圆的定义得|BA|BF|CA|CF|2a,所以ABC的周长为|BA|BC|CA|BA|BF|CF|CA|(|BA|BF|)(|CF|CA|)2a2a4a4.3椭圆y21的左、右焦点分别为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|等于()A.B.C.D4答案
7、A解析F1(,0),PF1x轴,P,|PF1|,|PF2|4.4(2018河北衡水中学调研)设F1,F2分别是椭圆1的左、右焦点,P为椭圆上任意一点,点M的坐标为(6,4),则|PM|PF1|的最小值为_答案5解析由椭圆的方程可知F2(3,0),由椭圆的定义可得|PF1|2a|PF2|.|PM|PF1|PM|(2a|PF2|)|PM|PF2|2a|MF2|2a,当且仅当M,P,F2三点共线时取得等号,又|MF2|5,2a10,|PM|PF1|5105,即|PM|PF1|的最小值为5.思维升华椭圆定义的应用技巧(1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离
8、心率等(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题题型二椭圆的标准方程命题点1定义法例1(1)已知A(1,0),B是圆F:x22xy2110(F为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P的轨迹方程为()A.1B.1C.1D.1答案D解析由题意得|PA|PB|,|PA|PF|PB|PF|r2|AF|2,点P的轨迹是以A,F为焦点的椭圆,且a,c1,b,动点P的轨迹方程为1,故选D.(2)在ABC中,A(4,0),B(4,0),ABC的周长是18,则顶点C的轨迹方程是()A.1(y0) B.1(y0)C.1(y0) D.1(y0)答案A解析由|AC|BC|1
9、88108知,顶点C的轨迹是以A,B为焦点的椭圆(A,B,C不共线)设其方程为1(ab0),则a5,c4,从而b3.由A,B,C不共线知y0.故顶点C的轨迹方程是1(y0)命题点2待定系数法例2(1)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,(,),则椭圆方程为_答案1解析设椭圆方程为mx2ny21(m,n0,mn)由解得m,n.椭圆方程为1.(2)一个椭圆的中心在原点,坐标轴为对称轴,焦点F1,F2在x轴上,P(2,)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆方程为_答案1解析椭圆的中心在原点,焦点F1,F2在x轴上,可设椭圆方程为1(ab0),P(2,
10、)是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,又a2b2c2,a2,b,c,椭圆方程为1.思维升华 (1)求椭圆的标准方程多采用定义法和待定系数法(2)利用定义法求椭圆方程,要注意条件2a|F1F2|;利用待定系数法要先定形(焦点位置),再定量,也可把椭圆方程设为mx2ny21(m0,n0,mn)的形式跟踪训练1(1)已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且椭圆G上一点到两个焦点的距离之和为12,则椭圆G的方程为()A.1B.1C.1D.1答案A解析依题意设椭圆G的方程为1(ab0),椭圆上一点到两焦点的距离之和为12,2a12,a6,椭圆的离心率为,e,即,
11、解得b29,椭圆G的方程为1,故选A.(2)过点(,),且与椭圆1有相同焦点的椭圆的标准方程为_答案1解析所求椭圆与椭圆1的焦点相同,其焦点在y轴上,且c225916.设它的标准方程为1(ab0)c216,且c2a2b2,故a2b216.又点(,)在所求椭圆上,1,即1.由得b24,a220,所求椭圆的标准方程为1.题型三椭圆的几何性质命题点1求离心率的值(或范围)例3(1)(2018深圳模拟)设椭圆C:1(ab0)的左、右焦点分别为F1,F2,P是C上的点,PF2F1F2,PF1F230,则C的离心率为()A.B.C.D.答案D解析方法一如图,在RtPF2F1中,PF1F230,|F1F2|
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第九 平面 解析几何
链接地址:https://www.77wenku.com/p-107901.html