鲁京津琼专用2020版高考数学大一轮复习第六章数列6.1数列的概念与简单表示法教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第六章数列6.1数列的概念与简单表示法教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第六章数列6.1数列的概念与简单表示法教案含解析(16页珍藏版)》请在七七文库上搜索。
1、6.1数列的概念与简单表示法最新考纲1.通过日常生活中的实例,了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是一种特殊函数1数列的有关概念概念含义数列按照一定顺序排列着的一列数数列的项数列中的每一个数数列的通项数列an的第n项an通项公式数列an的第n项an与n之间的关系能用公式anf(n)表示,这个公式叫做数列的通项公式前n项和数列an中,Sna1a2an叫做数列的前n项和2.数列的表示方法列表法列表格表示n与an的对应关系图象法把点(n,an)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和an1f(an)或a1,a2和an
2、1f(an,an1)等表示数列的方法3.an与Sn的关系若数列an的前n项和为Sn,则an4数列的分类分类标准类型满足条件项数有穷数列项数有限无穷数列项数无限项与项间的大小关系递增数列an1an其中nN*递减数列an1an,即(n1)2(n1)n2n,整理,得2n10,即(2n1)(*)因为n1,所以(2n1)3,要使不等式(*)恒成立,只需3.5数列an中,ann211n(nN*),则此数列最大项的值是答案30解析ann211n2,nN*,当n5或n6时,an取最大值30.6已知数列an的前n项和Snn21,则an.答案解析当n1时,a1S12,当n2时,anSnSn1n21(n1)212n
3、1,a12不满足上式故an题型一由数列的前几项求数列的通项公式例1根据下面各数列前几项的值,写出数列的一个通项公式:(1),;(2)1,7,13,19,;(3),2,8,;(4)5,55,555,5555,.解(1)这是一个分数数列,其分子构成偶数数列,而分母可分解为13,35,57,79,911,每一项都是两个相邻奇数的乘积,分子依次为2,4,6,相邻的偶数故所求数列的一个通项公式为an.(2)偶数项为正,奇数项为负,故通项公式必含有因式(1)n,观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为an(1)n(6n5)(3)数列的各项,有的是分数,有的是整数,可
4、将数列的各项都统一成分数再观察即,分子为项数的平方,从而可得数列的一个通项公式为an.(4)将原数列改写为9,99,999,易知数列9,99,999,的通项为10n1,故所求的数列的一个通项公式为an(10n1)思维升华求数列通项时,要抓住以下几个特征:(1)分式中分子、分母的特征(2)相邻项的变化特征(3)拆项后变化的部分和不变的部分的特征(4)各项符号特征等(5)若关系不明显时,应将部分项作适当的变形,统一成相同的形式跟踪训练1(1)数列,的一个通项公式an.答案(1)n解析这个数列前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式为an(1)n.
5、(2)数列an的前4项是,1,则这个数列的一个通项公式是an.答案解析数列an的前4项可变形为,故an.题型二由an与Sn的关系求通项公式例2(1)已知数列an的前n项和Sn2n23n,则an.答案4n5解析a1S1231,当n2时,anSnSn1(2n23n)2(n1)23(n1)4n5,由于a1也适合此等式,an4n5.(2)(2018全国)记Sn为数列an的前n项和若Sn2an1,则S6.答案63解析Sn2an1,当n2时,Sn12an11,anSnSn12an2an1(n2),即an2an1(n2)当n1时,a1S12a11,得a11.数列an是首项a11,公比q2的等比数列,Sn12
6、n,S612663.(3)已知数列an满足a12a23a3nan2n,则an.答案解析当n1时,由已知,可得a1212,a12a23a3nan2n,故a12a23a3(n1)an12n1(n2),由得nan2n2n12n1,an.显然当n1时不满足上式,an思维升华已知Sn求an的常用方法是利用an一定要检验a1的情况跟踪训练2(1)已知数列an的前n项和Sn3n1,则an.答案解析当n1时,a1S1314;当n2时,anSnSn1(3n1)(3n11)23n1.当n1时,23112a1,所以an(2)设数列an满足a13a232a33n1an,则an.答案解析因为a13a232a33n1an
7、,则当n2时,a13a232a33n2an1,得3n1an,所以an(n2)由题意知a1符合上式,所以an.(3)若数列an的前n项和Snan,则an的通项公式是an.答案(2)n1解析当n1时,a1S1a1,即a11;当n2时,anSnSn1anan1,故2,故an(2)n1.题型三由数列的递推关系求通项公式例3设数列an中,a12,an1ann1,则an.答案解析由条件知an1ann1,则an(a2a1)(a3a2)(a4a3)(anan1)a1(234n)2.引申探究1若将“an1ann1”改为“an1an”,如何求解?解an1an,a12,an0,.ana12.2若将“an1ann1”
8、改为“an12an3”,如何求解?解设递推公式an12an3可以转化为an1t2(ant),即an12ant,解得t3.故an132(an3)令bnan3,则b1a135,且2.所以bn是以5为首项,2为公比的等比数列所以bn52n1,故an52n13.3若将“an1ann1”改为“an1”,如何求解?解an1,a12,an0,即,又a12,则,是以为首项,为公差的等差数列(n1).an.4若将本例条件换为“a11,an1an2n”,如何求解?解an1an2n,an2an12n2,故an2an2.即数列an的奇数项与偶数项都是公差为2的等差数列当n为偶数时,a21,故ana22n1.当n为奇数
9、时,an1an2n,an1n(n1为偶数),故ann.综上所述,annN*.思维升华已知数列的递推关系求通项公式的典型方法(1)当出现anan1m时,构造等差数列(2)当出现anxan1y时,构造等比数列(3)当出现anan1f(n)时,用累加法求解(4)当出现f(n)时,用累乘法求解跟踪训练3(1)已知数列an满足a11,a24,an22an3an1(nN*),则数列an的通项公式an.答案32n12解析由an22an3an10,得an2an12(an1an),数列an1an是以a2a13为首项,2为公比的等比数列,an1an32n1,当n2时,anan132n2,a3a232,a2a13,
10、将以上各式累加,得ana132n23233(2n11),an32n12(当n1时,也满足)(2)在数列an中,a13,an1an,则通项公式an.答案4解析原递推公式可化为an1an,则a2a1,a3a2,a4a3,an1an2,anan1,逐项相加得ana11,故an4,经验证a1,a2也符合题型四数列的性质命题点1数列的单调性例4已知an,那么数列an是()A递减数列B递增数列C常数列D摆动数列答案B解析an1,将an看作关于n的函数,nN*,易知an是递增数列命题点2数列的周期性例5(2019钦州质检)在数列an中,a10,an1,则S2020.答案0解析a10,an1,a2,a3,a4
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第六 数列
链接地址:https://www.77wenku.com/p-107902.html