鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量8.7立体几何中的向量方法二教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量8.7立体几何中的向量方法二教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量8.7立体几何中的向量方法二教案含解析(27页珍藏版)》请在七七文库上搜索。
1、8.7立体几何中的向量方法(二)求空间角和距离最新考纲1.能用向量方法解决线线、线面、面面的夹角的计算问题.2.体会向量方法在研究几何问题中的作用1两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角a与b的夹角范围0,求法coscos2.直线与平面所成角的求法设直线l的方向向量为a,平面的法向量为n,直线l与平面所成的角为,a与n的夹角为,则sin|cos|.3求二面角的大小(1)如图,AB,CD分别是二面角l的两个面内与棱l垂直的直线,则二面角的大小,(2)如图,n1,n2分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos|cosn1,n
2、2|,二面角的平面角大小是向量n1与n2的夹角(或其补角)概念方法微思考1利用空间向量如何求线段长度?提示利用|2可以求空间中有向线段的长度2如何求空间点面之间的距离?提示点面距离的求法:已知AB为平面的一条斜线段,n为平面的法向量,则点B到平面的距离为|cos,n|.题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)两直线的方向向量所成的角就是两条直线所成的角()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角()(3)两个平面的法向量所成的角是这两个平面所成的角()(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是0,()(5)若二面角
3、a的两个半平面,的法向量n1,n2所成角为,则二面角a的大小是.()题组二教材改编2已知两平面的法向量分别为m(0,1,0),n(0,1,1),则两平面所成的二面角为()A45B135C45或135D90答案C解析cosm,n,即m,n45.两平面所成二面角为45或18045135.3如图,正三棱柱(底面是正三角形的直棱柱)ABCA1B1C1的底面边长为2,侧棱长为2,则AC1与侧面ABB1A1所成的角为_答案解析如图,以A为原点,以,(AEAB),所在直线分别为x轴、y轴、z轴(如图)建立空间直角坐标系,设D为A1B1的中点,则A(0,0,0),C1(1,2),D(1,0,2),(1,2),
4、(1,0,2)C1AD为AC1与平面ABB1A1所成的角,cosC1AD,又C1AD,C1AD.题组三易错自纠4在直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A.B.C.D.答案C解析以点C为坐标原点,CA,CB,CC1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系设BCCACC12,则可得A(2,0,0),B(0,2,0),M(1,1,2),N(1,0,2),(1,1,2),(1,0,2)cos,.5已知向量m,n分别是直线l和平面的方向向量和法向量,若cosm,n,则l与所成的角为_答案30解
5、析设l与所成角为,cosm,n,sin|cosm,n|,090,30.题型一求异面直线所成的角例1如图,四边形ABCD为菱形,ABC120,E,F是平面ABCD同一侧的两点,BE平面ABCD,DF平面ABCD,BE2DF,AEEC.(1)证明:平面AEC平面AFC;(2)求直线AE与直线CF所成角的余弦值(1)证明如图所示,连接BD,设BDACG,连接EG,FG,EF.在菱形ABCD中,不妨设GB1.由ABC120,可得AGGC.由BE平面ABCD,ABBC2,可知AEEC.又AEEC,所以EG,且EGAC.在RtEBG中,可得BE,故DF.在RtFDG中,可得FG.在直角梯形BDFE中,由B
6、D2,BE,DF,可得EF,从而EG2FG2EF2,所以EGFG.又ACFGG,AC,FG平面AFC,所以EG平面AFC.因为EG平面AEC,所以平面AEC平面AFC.(2)解如图,以G为坐标原点,分别以GB,GC所在直线为x轴、y轴,|为单位长度,建立空间直角坐标系Gxyz,由(1)可得A(0,0),E(1,0,),F,C(0,0),所以(1,),.故cos,.所以直线AE与直线CF所成角的余弦值为.思维升华用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦
7、值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值跟踪训练1三棱柱ABCA1B1C1中,ABC为等边三角形,AA1平面ABC,AA1AB,N,M分别是A1B1,A1C1的中点,则AM与BN所成角的余弦值为()A.B.C.D.答案C解析如图所示,取AC的中点D,以D为原点,BD,DC,DM所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设AC2,则A(0,1,0),M(0,0,2),B(,0,0),N,所以(0,1,2),所以cos,故选C.题型二求直线与平面所成的角例2(2018全国)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把DFC折起,使点
8、C到达点P的位置,且PFBF.(1)证明:平面PEF平面ABFD;(2)求DP与平面ABFD所成角的正弦值(1)证明由已知可得BFPF,BFEF,PFEFF,PF,EF平面PEF,所以BF平面PEF.又BF平面ABFD,所以平面PEF平面ABFD.(2)解如图,作PHEF,垂足为H.由(1)得,PH平面ABFD.以H为坐标原点,的方向为y轴正方向,|为单位长,建立如图所示的空间直角坐标系Hxyz.由(1)可得,DEPE.又DP2,DE1,所以PE.又PF1,EF2,所以PEPF.所以PH,EH.则H(0,0,0),P,D,.又为平面ABFD的法向量,设DP与平面ABFD所成的角为,则sin|c
9、os,|.所以DP与平面ABFD所成角的正弦值为.思维升华若直线l与平面的夹角为,直线l的方向向量l与平面的法向量n的夹角为,则或,故有sin|cos|.跟踪训练2(2018全国)如图,在三棱锥PABC中,ABBC2,PAPBPCAC4,O为AC的中点(1)证明:PO平面ABC;(2)若点M在棱BC上,且二面角MPAC为30,求PC与平面PAM所成角的正弦值(1)证明因为PAPCAC4,O为AC的中点,所以OPAC,且OP2.如图,连接OB.因为ABBCAC,所以ABC为等腰直角三角形,所以OBAC,OBAC2.由OP2OB2PB2知POOB.因为OPOB,OPAC,OBACO,OB,AC平面
10、ABC,所以PO平面ABC.(2)解由(1)知OP,OB,OC两两垂直,则以O为坐标原点,分别以OB,OC,OP所在直线为x轴、y轴、z轴,建立空间直角坐标系Oxyz,如图所示由已知得O(0,0,0),B(2,0,0),A(0,2,0),C(0,2,0),P(0,0,2),(0,2,2)由(1)知平面PAC的一个法向量为(2,0,0)设M(a,2a,0)(0a2),则(a,4a,0)设平面PAM的法向量为n(x,y,z)由n0,n0,得可取ya,得平面PAM的一个法向量为n(a4),a,a),所以cos,n.由已知可得|cos,n|cos30,所以,解得a4(舍去)或a.所以n.又(0,2,2
11、),所以cos,n.所以PC与平面PAM所成角的正弦值为.题型三求二面角例3(2018济南模拟)如图1,在高为6的等腰梯形ABCD中,ABCD,且CD6,AB12,将它沿对称轴OO1折起,使平面ADO1O平面BCO1O.如图2,点P为BC中点,点E在线段AB上(不同于A,B两点),连接OE并延长至点Q,使AQOB.(1)证明:OD平面PAQ;(2)若BE2AE,求二面角CBQA的余弦值(1)证明由题设知OA,OB,OO1两两垂直,所以以O为坐标原点,OA,OB,OO1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,设AQ的长度为m,则相关各点的坐标为O(0,0,0),A(6,0,
12、0),B(0,6,0),C(0,3,6),D(3,0,6),Q(6,m,0)点P为BC中点,P,(3,0,6),(0,m,0),0,0,且与不共线,OD平面PAQ.(2)解BE2AE,AQOB,AQOB3,则Q(6,3,0),(6,3,0),(0,3,6)设平面CBQ的法向量为n1(x,y,z),令z1,则y2,x1,则n1(1,2,1),易知平面ABQ的一个法向量为n2(0,0,1),设二面角CBQA的平面角为,由图可知,为锐角,则cos.思维升华利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:求平面的垂线的方向向量;利用法向量与平面内两个不共线向量的数量积为零,
13、列方程组求解跟踪训练3(2018全国)如图,边长为2的正方形ABCD所在的平面与半圆弧所在平面垂直,M是上异于C,D的点(1)证明:平面AMD平面BMC;(2)当三棱锥MABC体积最大时,求平面MAB与平面MCD所成二面角的正弦值(1)证明由题设知,平面CMD平面ABCD,交线为CD.因为BCCD,BC平面ABCD,所以BC平面CMD,又DM平面CMD,故BCDM.因为M为上异于C,D的点,且DC为直径,所以DMCM.又BCCMC,BC,CM平面BMC,所以DM平面BMC.又DM平面AMD,故平面AMD平面BMC.(2)解以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系Dxyz
14、.当三棱锥MABC体积最大时,M为的中点由题设得D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),M(0,1,1),(2,1,1),(0,2,0),(2,0,0),设n(x,y,z)是平面MAB的法向量,则即可取n(1,0,2),是平面MCD的一个法向量,因此cosn,sinn,.所以平面MAB与平面MCD所成二面角的正弦值是.利用空间向量求空间角例(12分)如图,四棱锥SABCD中,ABD为正三角形,BCD120,CBCDCS2,BSD90.(1)求证:AC平面SBD;(2)若SCBD,求二面角ASBC的余弦值(1)证明设ACBDO,连接SO,如图,因为ABAD,CBC
15、D,所以AC是BD的垂直平分线,即O为BD的中点,且ACBD.1分在BCD中,因为CBCD2,BCD120,所以BD2,CO1.在RtSBD中,因为BSD90,O为BD的中点,所以SOBD.在SOC中,因为CO1,SO,CS2,所以SO2CO2CS2,所以SOAC.4分因为BDSOO,BD,SO平面SBD,所以AC平面SBD.5分(2)解方法一过点O作OKSB于点K,连接AK,CK,如图,由(1)知AC平面SBD,所以AOSB.因为OKAOO,OK,AO平面AOK,所以SB平面AOK.6分因为AK平面AOK,所以AKSB.同理可证CKSB.7分所以AKC是二面角ASBC的平面角因为SCBD,由
16、(1)知ACBD,且ACSCC,AC,SC平面SAC,所以BD平面SAC.而SO平面SAC,所以SOBD.在RtSOB中,OK.在RtAOK中,AK,同理可求CK.10分在AKC中,cosAKC.所以二面角ASBC的余弦值为.12分方法二因为SCBD,由(1)知,ACBD,且ACSCC,AC,SC平面SAC,所以BD平面SAC.而SO平面SAC,所以SOBD.6分由(1)知,AC平面SBD,SO平面SBD,所以SOAC.因为ACBDO,AC,BD平面ABCD,所以SO平面ABCD.7分以O为原点,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系,如图,则A(3,0,0),B(0,0),C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第八 立体几何 空间 向量
链接地址:https://www.77wenku.com/p-107907.html