鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量微专题九立体几何中的动态问题教案含解析
《鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量微专题九立体几何中的动态问题教案含解析》由会员分享,可在线阅读,更多相关《鲁京津琼专用2020版高考数学大一轮复习第八章立体几何与空间向量微专题九立体几何中的动态问题教案含解析(5页珍藏版)》请在七七文库上搜索。
1、微专题九立体几何中的动态问题解题策略立体几何中的“动态”问题就变化起因而言大致可分为两类:一是平移;二是旋转就所求变量而言可分为三类:一是相关线、面、体的测度;二是角度;三是距离立体几何动态问题的解决需要较高的空间想象能力与化归处理能力,在各省市的高考选择题与填空题中也时有出现在解“动态”立体几何题时,如果我们能努力探寻运动过程中“静”的一面,动中求静,往往能以静制动、克难致胜1去掉枝蔓见本质大道至简在解决立体几何中的“动态”问题时,需从复杂的图形中分化出最简单的具有实质性意义的点、线、面,让几何图形的实质“形销骨立”,即从混沌中找出秩序,是解决“动态”问题的关键例1如图1,直线l平面,垂足为
2、O.正方体ABCDA1B1C1D1的棱长为2.点A是直线l上的动点,点B1在平面内,则点O到线段CD1中点P的距离的最大值为_图1答案2解析从图形分化出4个点O,A,B1,P,其中AOB1为直角三角形,固定AOB1,点P的轨迹是在与AB1垂直的平面上且以AB1的中点Q为圆心的圆,从而OPOQQPAB122,当且仅当OQAB1,且点O,Q,P共线时取到等号,此时直线AB1与平面成45角2极端位置巧分析穷妙极巧在解决立体几何中的“动态”问题时,对于移动问题,由图形变化的连续性,穷尽极端特殊之要害,往往能直取答案例2在正四面体ABCD中,E为棱BC的中点,F为直线BD上的动点,则平面AEF与平面AC
3、D所成二面角的正弦值的取值范围是_答案解析本例可用极端位置法来加以分析先寻找垂直:记O为ACD的中心,G为OC的中点,则BO面ACD,EG面ACD.如图2,过点A,E,G的平面交直线BD于点F.此时,平面AEF与平面ACD所面二面角的正弦值为1.由图形变化的连续性知,当点F在直线BD的无穷远处时,看成EF和BD平行,此时平面AEF与平面ACD所成二面角最小(如图3),其正弦值为.图2图3综上可知,平面AEF与平面ACD所成二面角的正弦值的取值范围为.3用法向量定平面定海神针在解决立体几何中的“动态”问题时,有关角度计算问题,用法向量定平面,可将线面角或面面角转化为线线角例3在长方体ABCDA1
4、B1C1D1中,已知二面角A1BDA的大小为,若空间有一条直线l与直线CC1所成的角为,则直线l与平面A1BD所成角的取值范围是_答案解析如图4,过点A作AEBD于点E,连接A1E,则A1EA.过点A作AHA1E于点H,则为平面A1BD的法向量,且A1AH.因为l与直线CC1所成角的大小为,即l与直线AA1所成角的大小为,那么l与直线AH所成角的取值范围为.又因为l与直线AH所成的角和l与平面A1BD所成的角互余,所以直线l与平面A1BD所成角的取值范围是.图44锁定垂面破翻折独挡一面在解决立体几何中的“动态”问题时,对于翻折或投影问题,若能抓住相关线或面的垂面,化空间为平面,则容易找到问题的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 鲁京津琼 专用 2020 高考 数学 一轮 复习 第八 立体几何 空间 向量 专题 中的 动态 问题 教案 解析
链接地址:https://www.77wenku.com/p-107917.html