江苏专用2020版高考数学大一轮复习第四章三角函数解三角形4.6正弦定理和余弦定理教案含解析
《江苏专用2020版高考数学大一轮复习第四章三角函数解三角形4.6正弦定理和余弦定理教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第四章三角函数解三角形4.6正弦定理和余弦定理教案含解析(17页珍藏版)》请在七七文库上搜索。
1、4.6正弦定理和余弦定理考情考向分析以利用正弦、余弦定理和三角形面积公式解三角形为主,常与三角函数的图象和性质、三角恒等变换、三角形中的几何计算交汇考查,加强数形结合思想的应用意识题型多样,中档难度1正弦定理、余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,R为ABC外接圆半径,则定理正弦定理余弦定理内容(1)2R(2)a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC变形(3)a2RsinA,b2RsinB,c2RsinC;(4)sinA,sinB,sinC;(5)abcsinAsinBsinC;(6)asinBbsinA,bsinCcsinB,a
2、sinCcsinA(7)cosA;cosB;cosC2在ABC中,已知a,b和A时,解的情况A为锐角A为钝角或直角图形关系式absinAbsinAab解的个数一解两解一解一解3.三角形常用面积公式(1)Saha(ha表示边a上的高);(2)SabsinCacsinBbcsinA;(3)Sr(abc)(r为三角形内切圆半径)概念方法微思考1在ABC中,AB是否可推出sinAsinB?提示在ABC中,由AB可推出sinAsinB.2如图,在ABC中,有如下结论:bcosCccosBa.试类比写出另外两个式子提示acosBbcosAc;acosCccosAb.题组一思考辨析1判断下列结论是否正确(请
3、在括号中打“”或“”)(1)三角形中三边之比等于相应的三个内角之比()(2)当b2c2a20时,三角形ABC为锐角三角形()(3)在ABC中,.()(4)在三角形中,已知两边和一角就能求三角形的面积()题组二教材改编2P9T2在ABC中,AB,A75,B45,则AC.答案2解析C180754560,由正弦定理得,即,解得AC2.3P11T6在ABC中,A60,b1,面积为,则边长c.答案4解析A60,b1,面积为bcsinA1c,c4.4P11T7ABC的内角A,B,C的对边分别为a,b,c,若2bcosBacosCccosA,则B.答案解析由正弦定理可得,2cosBsinBsinAcosCs
4、inCcosAsin(AC)sinB,sinB0,cosB,0B,B.题组三易错自纠5在ABC中,角A,B,C所对的边分别为a,b,c,若cbcosA,则ABC的形状为三角形答案钝角解析由已知及正弦定理得sinCsinBcosA,sin(AB)sinBcosA,sinAcosBcosAsinBsinBcosA,即sinAcosB0,cosB0,B为钝角,故ABC为钝角三角形6在ABC中,已知a2,b,A45,则满足条件的三角形有个答案2解析bsinA,bsinAab.满足条件的三角形有2个7设ABC的内角A,B,C所对边的长分别为a,b,c.若bc2a,3sinA5sinB,则C.答案解析由3
5、sinA5sinB及正弦定理,得3a5b.又因为bc2a,所以ab,cb,所以cosC.因为C(0,),所以C.题型一利用正弦、余弦定理解三角形例1(2018天津)在ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinAacos.(1)求角B的大小;(2)设a2,c3,求b和sin(2AB)的值解(1)在ABC中,由正弦定理,可得bsinAasinB.又由bsinAacos,得asinBacos,即sinBcos,所以tanB.又因为B(0,),所以B.(2)在ABC中,由余弦定理及a2,c3,B,得b2a2c22accosB7,故b.由bsinAacos,可得sinA.因为ac,所
6、以cosA.因此sin2A2sinAcosA,cos2A2cos2A1.所以sin(2AB)sin2AcosBcos2AsinB.思维升华 (1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系跟踪训练1(1)在ABC中,角A,B,C的对边分别是a,b,c,已知bc,a22b2(1sinA),则A.答案解析在ABC中,由余弦定理得a2b2c22bc
7、cosA,bc,a22b2(1cosA),又a22b2(1sinA),cosAsinA,tanA1,A(0,),A.(2)如图所示,在ABC中,D是边AC上的点,且ABAD,2ABBD,BC2BD,则sinC的值为答案解析设ABa,ABAD,2ABBD,BC2BD,ADa,BD,BC.在ABD中,cosADB,sinADB,sinBDC.在BDC中,sin C.题型二和三角形面积有关的问题例2在ABC中,内角A,B,C所对的边分别为a,b,c.已知bc2acosB.(1)证明:A2B;(2)若ABC的面积S,求角A的大小(1)证明由正弦定理得sinBsinC2sinAcosB,故2sinAco
8、sBsinBsin(AB)sinBsinAcosBcosAsinB,于是sinBsin(AB)又A,B(0,),故0AB,所以B(AB)或BAB,因此A(舍去)或A2B,所以A2B.(2)解由S,得absinC,故有sinBsinCsinAsin2BsinBcosB,由sinB0,得sinCcosB.又B,C(0,),所以CB.当BC时,A;当CB时,A.综上,A或A.思维升华 (1)对于面积公式SabsinCacsinBbcsinA,一般是已知哪一个角就使用哪一个公式(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化跟踪训练2(1)在ABC中,内角A,B,C所对的边分别是a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第四 三角函数 三角形
链接地址:https://www.77wenku.com/p-107955.html