江苏专用2020版高考数学大一轮复习第十一章计数原理随机变量及其概率分布11.1分类计数原理与分步计数原理教案含解析
《江苏专用2020版高考数学大一轮复习第十一章计数原理随机变量及其概率分布11.1分类计数原理与分步计数原理教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第十一章计数原理随机变量及其概率分布11.1分类计数原理与分步计数原理教案含解析(12页珍藏版)》请在七七文库上搜索。
1、第十一章 计数原理、随机变量及其概率分布考试内容等级要求加法原理与乘法原理B排列与组合B二项式定理B离散型随机变量及其分布列A超几何分布A条件概率及相互独立事件An次独立重复试验的模型及二项分布B离散型随机变量的均值与方差B11.1分类计数原理与分步计数原理考情考向分析以理解和应用两个基本原理为主,常以实际问题为载体,加强分类讨论思想,注重分析问题、解决问题能力的考查,常与排列、组合知识交汇;两个计数原理在高考中单独命题较少,一般是与排列组合结合进行考查;两个计数原理的考查一般以解答题的形式出现,难度为中档1分类计数原理如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式
2、中有m2种不同的方法,在第n类方式中有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法2分步计数原理如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有Nm1m2mn种不同的方法3分类和分步的区别,关键是看事件能否一步完成,事件一步完成了就是分类;必须要连续若干步才能完成的则是分步分类要用分类计数原理将种数相加;分步要用分步计数原理,将种数相乘概念方法微思考1在解题过程中如何判定是用分类计数原理还是分步计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类计数原理;如果每类办法中
3、的每一种方法只能完成事件的一部分,就用分步计数原理2两种原理解题策略有哪些?提示分清要完成的事情是什么;分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;有无特殊条件的限制;检验是否有重复或遗漏题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)在分类计数原理中,两类不同方案中的方法可以相同()(2)在分类计数原理中,每类方案中的方法都能直接完成这件事()(3)在分步计数原理中,事情是分步完成的,其中任何一个单独的步骤都不能完成这件事,只有每个步骤都完成后,这件事情才算完成()(4)如果完成一件事情有n个不同步骤,在每一步中都有若干种不同的方法mi(i1
4、,2,3,n),那么完成这件事共有m1m2m3mn种方法()(5)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的()题组二教材改编2P9T8已知集合M1,2,3,N4,5,6,7,从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是_答案6解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是326.3P29习题T9将3个不同的小球放入编号分别为1,2,3,4,5,6的盒子内,6号盒子中至少有1个球的放法种数是_答案91解析本题应分为6号盒子中有1个球,2个
5、球,3个球三类来解答,可列式为C(AA)CAC91(种)题组三易错自纠4从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为_答案18解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有32212(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3216(个)奇数根据分类计数原理知,共有12618(个)奇数5如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有_个答案12解析当组成的数字有三个1,三个2,三个3,三个4
6、时共有4种情况当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类计数原理可知,共有12种结果6已知某公园有4个门,从一个门进,另一个门出,则不同的走法的种数为_答案12解析将4个门编号为1,2,3,4,从1号门进入后,有3种出门的方式,共3种走法,从2,3,4号门进入,同样各有3种走法,共有3412(种)不同的走法7.现用4种不同颜色对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有_种答案48解析需要先给C块着色,有4种方法;
7、再给A块着色,有3种方法;再给B块着色,有2种方法;最后给D块着色,有2种方法,由分步计数原理知,共有432248(种)着色方法题型一分类计数原理1满足a,b1,0,1,2,且关于x的方程ax22xb0有实数解的有序数对(a,b)的个数为_答案13解析方程ax22xb0有实数解的情况应分类讨论当a0时,方程为一元一次方程2xb0,不论b取何值,方程一定有解此时b的取值有4个,故此时有4个有序数对当a0时,需要44ab0,即ab1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2)a0时,(a,b)共有3412(个)实数对,故a0时满足条件的实数对有1239(个),所以答案应
8、为4913.2如果一个三位正整数如“a1a2a3”满足a1a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为_答案240解析若a22,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个若a23,则百位数字有两种选择,个位数字有三种选择,则“凸数”有236(个)若a24,满足条件的“凸数”有3412(个),若a29,满足条件的“凸数”有8972(个)所以所有凸数有26122030425672240(个)3定义“规范01数列”an如下:an共有2m项,其中m项为0,m项为1,且对任意k2m,a1,a2,ak中0的个数不少于1的个数若m4,则不同的
9、“规范01数列”共有_个答案14解析第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共有A个,其中110100,110010,110001,101100不符合题意;三个1都不在一起时有C个,共28414(个)思维升华分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置(1)根据题目特点恰当选择一个分类标准(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复(3)分类时除了不能交叉重复外,还不能有遗漏题型二分步计数原理例1(1)如图,小明从街道的E处出
10、发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为_答案18解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6318(条)(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有_种不同的报名方法答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步计数原理,可得不同的报名方法共有654120(种)引申探究1本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每
11、项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步计数原理,可得不同的报名方法共有36729(种)2本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步计数原理,可得不同的报名方法共有63216(种)思维升华 (1)利用分步计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事(2)分步必
12、须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成跟踪训练1一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有_种(用数字作答)答案48解析根据题意,从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有6种选法;参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有4种选法;参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任取一个,有2种选法由分步计数原理知,共有64248(种)不同的游览线路题型三两个计数原理的综合应用命题点1与数字有关的
13、问题例2用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有_个(用数字作答)答案1080解析当组成四位数的数字中有一个偶数时,四位数的个数为CCA960.当组成四位数的数字中不含偶数时,四位数的个数为A120.故符合题意的四位数一共有9601201080(个)命题点2涂色、种植问题例3如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数为_答案96解析按区域1与3是否同色分类:区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A种方
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第十一 计数 原理 随机变量 及其 概率 分布 11
链接地址:https://www.77wenku.com/p-107969.html