江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.3不等式选讲第1课时绝对值不等式教案含解析
《江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.3不等式选讲第1课时绝对值不等式教案含解析》由会员分享,可在线阅读,更多相关《江苏专用2020版高考数学大一轮复习第十二章系列4选讲12.3不等式选讲第1课时绝对值不等式教案含解析(13页珍藏版)》请在七七文库上搜索。
1、第1课时绝对值不等式考情考向分析本节考查热点为绝对值不等式的解法及证明在高考中主要以解答题的形式考查,属于低档题1绝对值不等式的解法(1)含有绝对值的不等式|x|a的解集不等式a0a0a0|x|a(,a)(a,)(,0)(0,)R(2)|axb|c(c0)和|axb|c(c0)型不等式的解法|axb|ccaxbc;|axb|caxbc或axbc.(3)|xa|xb|c(c0)和|xa|xb|c(c0)型不等式的解法利用绝对值不等式的几何意义求解,体现了数形结合的思想;利用“零点分段法”求解,体现了分类讨论的思想;通过构造函数,利用函数的图象求解,体现了函数与方程的思想2含有绝对值的不等式的性质
2、(1)如果a,b是实数,则|a|b|ab|a|b|.(2)如果a,b,c是实数,那么|ac|ab|bc|,当且仅当(ab)(bc)0时,等号成立题组一思考辨析1判断下列结论是否正确(请在括号中打“”或“”)(1)若|x|c的解集为R,则c0.()(2)不等式|x1|x2|b0时等号成立()(4)对|a|b|ab|当且仅当|a|b|时等号成立()(5)对|ab|a|b|当且仅当ab0时等号成立()题组二教材改编2P6例3不等式3|52x|9的解集为_答案(2,14,7)解析由题意得即解得不等式的解集为(2,1 4,7)3P6例4求不等式|x1|x5|2的解集解当x1时,原不等式可化为1x(5x)
3、2,42,不等式恒成立,x1;当1x5时,原不等式可化为x1(5x)2,x4,1x4;当x5时,原不等式可化为x1(x5)2,该不等式不成立综上,原不等式的解集为(,4)4P6例4若存在实数x满足不等式|x4|x3|a,求实数a的取值范围解由绝对值不等式的几何性质知,|x4|x3|(x4)(x3)|1,当且仅当(x4)(x3)0时,等号成立所以函数y|x4|x3|的最小值为1.因为原不等式有实数解,所以a的取值范围是(1,)题组三易错自纠5若函数f(x)|x1|2|xa|的最小值为5,则实数a_.答案4或6解析方法一当a1时,f(x)3|x1|,f(x)min0,不符合题意;当a1时,f(x)
4、f(x)minf(a)a15,a4成立综上,a4或a6.方法二当a1时,f(x)min0,不符合题意;当a1时,f(x)minf(a)|a1|5,a4或a6.6若存在实数x,使|xa|x1|3成立,则实数a的取值范围是_答案2,4解析|xa|x1|(xa)(x1)|a1|,要使|xa|x1|3有解,可使|a1|3,3a13,2a4.7若不等式|2x1|x2|a2a2对任意实数x恒成立,则实数a的取值范围为_答案解析设y|2x1|x2|当x5;当2x;当x时,y3x1,故函数y|2x1|x2|的最小值为.因为不等式|2x1|x2|a2a2对任意实数x恒成立,所以a2a2.解不等式a2a2,得1a
5、,故实数a的取值范围为.题型一绝对值不等式的解法1已知函数f(x)x2ax4,g(x)|x1|x1|.(1)当a1时,求不等式f(x)g(x)的解集;(2)若不等式f(x)g(x)的解集包含1,1,求a的取值范围解(1)当a1时,不等式f(x)g(x)等价于x2x|x1|x1|40.当x1时,式化为x2x40,从而11.(1)当a2时,求不等式f(x)4|x4|的解集;(2)已知关于x的不等式|f(2xa)2f(x)|2的解集为x|1x2,求a的值解(1)方法一当a2时,由题意知|x2|x4|4,利用几何意义可知不等式表示数轴上x的对应点到2与4对应点的距离之和大于等于4,又2和4之间的距离为
6、2,即x在以2和4为标准分别向左或者向右平移1个单位长度的位置上故不等式的解集为x|x1或x5方法二当a2时,f(x)|x4|当x2时,由f(x)4|x4|,得2x64,解得x1;当2x4时,f(x)4|x4|无解;当x4时,由f(x)4|x4|,得2x64,解得x5.故原不等式的解集为x|x1或x5(2)记h(x)f(2xa)2f(x),则h(x)由|h(x)|2,解得x.又已知|h(x)|2的解集为x|1x2,所以解得a3.思维升华解绝对值不等式的基本方法(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝
7、对值符号的普通不等式(3)利用绝对值的几何意义,数形结合求解题型二利用绝对值不等式求最值例1(1)对任意x,yR,求|x1|x|y1|y1|的最小值;(2)对于实数x,y,若|x1|1,|y2|1,求|x2y1|的最大值解(1)x,yR,|x1|x|(x1)x|1,当且仅当0x1时等号成立|y1|y1|(y1)(y1)|2,当且仅当1y1时等号成式|x1|x|y1|y1|123,当且仅当0x1,1y1同时成立时等号成立|x1|x|y1|y1|的最小值为3.(2)|x2y1|(x1)2(y1)|x1|2(y2)2|12|y2|25,即|x2y1|的最大值为5.思维升华求含绝对值的函数最值时,常用
8、的方法有三种(1)利用绝对值的几何意义(2)利用绝对值三角不等式,即|a|b|ab|a|b|.(3)利用零点分区间法跟踪训练1(2018镇江模拟)已知a和b是任意非零实数(1)求的最小值;(2)若不等式|2ab|2ab|a|(|2x|2x|)恒成立,求实数x的取值范围解(1)4,当且仅当(2ab)(2ab)0时等号成立,的最小值为4.(2)若不等式|2ab|2ab|a|(|2x|2x|)恒成立,即|2x|2x|恒成立,故|2x|2x|min.由(1)可知,的最小值为4,x的取值范围即为不等式|2x|2x|4的解集解不等式得2x2,故实数x的取值范围为2,2题型三绝对值不等式的综合应用例2已知函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 一轮 复习 第十二 系列 12
链接地址:https://www.77wenku.com/p-107971.html