(通用版)2020版高考数学大二轮复习专题二函数与导数2.4.1函数的单调性、极值点、极值、最值课件理
《(通用版)2020版高考数学大二轮复习专题二函数与导数2.4.1函数的单调性、极值点、极值、最值课件理》由会员分享,可在线阅读,更多相关《(通用版)2020版高考数学大二轮复习专题二函数与导数2.4.1函数的单调性、极值点、极值、最值课件理(43页珍藏版)》请在七七文库上搜索。
1、2.4 压轴大题1 导数在函数中的应用,-2-,-3-,-4-,-5-,-6-,-7-,1.导数的几何意义 (1)函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0)处的切线的斜率,即k=f(x0). (2)函数切线问题的求解策略:用好切点“三重性”: 切点在函数图象上,满足函数解析式; 切点在切线上,满足切线方程; 切点处的导数等于切线的斜率. 2.函数的导数与单调性的关系 函数y=f(x)在(a,b)内可导, (1)若f(x)0在(a,b)内恒成立,则f(x)在(a,b)内单调递增; (2)若f(x)0在(a,b)内恒成立,则f(x)在(a,b)内单调递减. 3.函数的导数与单
2、调性的等价关系 函数f(x)在(a,b)内可导,f(x)在(a,b)任意子区间内都不恒等于0.f(x)0f(x)在(a,b)上为增函数.f(x)0f(x)在(a,b)上为减函数.,-8-,4.函数的极值、最值 (1)若在x0附近左侧f(x)0,右侧f(x)0,则f(x0)为函数f(x)的极小值. (2)设函数y=f(x)在a,b上连续,在(a,b)内可导,则f(x)在a,b上必有最大值和最小值且在极值点或端点处取得. (3)若函数f(x)在a,b上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在a,b上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 5
3、.常见恒成立不等式 (1)ln xx-1;(2)exx+1.,-9-,6.构造辅助函数的四种方法 (1)移项法:证明不等式f(x)g(x)(f(x)0(f(x)-g(x)0),进而构造辅助函数h(x)=f(x)-g(x); (2)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数;把不等式转化为左右两边是相同结构的式子的结构,根据“相同结构”构造辅助函数; (3)主元法:对于(或可化为)f(x1,x2)A的不等式,可选x1(或x2)为主元,构造函数f(x,x2)(或f(x1,x); (4)放缩法:若所构造函数最值不易求解,可将所证明不等式进行放缩,再重新构造函数.,-10-,6.构造辅
4、助函数的四种方法 (1)移项法:证明不等式f(x)g(x)(f(x)0(f(x)-g(x)g(x2)f(x)在a,b上的最大值g(x)在c,d上的最大值.,-11-,(5)x1a,b,当x2c,d时,f(x1)=g(x2)f(x)在a,b上的值域与g(x)在c,d上的值域交集非空. (6)x1a,b,x2c,d,f(x1)=g(x2)f(x)在a,b上的值域g(x)在c,d上的值域. (7)x2c,d,x1a,b,f(x1)=g(x2)f(x)在a,b上的值域g(x)在c,d上的值域. 9.求解导数应用题宏观上的解题思想是 借助导函数(正负)研究原函数(单调性); 重点是把导函数先“弄熟悉”;
5、 为了把导函数先“弄熟悉”采取的措施: (1)通分; (2)二次求导或三次求导; (3)能画出导函数草图是最好的!,2.4.1 函数的单调性、极值点、 极值、最值,-13-,考向一,考向二,考向三,考向四,求单调区间或讨论单调性(多维探究) 例1(2019山东菏泽一模,文21)已知函数h(x)=ln x-ax(aR). (1)设f(x)=h(x)+ +(a+1)x,求函数f(x)的单调区间; (2)略.,-14-,考向一,考向二,考向三,考向四,-15-,考向一,考向二,考向三,考向四,解题心得求f(x)的单调区间,需知f(x)的正负,若f(x)不含参数,但又不好判断正负,将f(x)中正负不定
6、的部分设为g(x),对g(x)再进行一次或二次求导,由g(x)的正负及g(x)的零点判断出g(x)的正负,进而得出f(x)的正负.,-16-,考向一,考向二,考向三,考向四,对点训练1设f(x)=ln x,g(x)= x|x|. (1)令F(x)=xf(x)-g(x),求F(x)的单调区间; (2)略.,-17-,考向一,考向二,考向三,考向四,-18-,考向一,考向二,考向三,考向四,例2已知函数f(x)= -x+aln x. (1)讨论f(x)的单调性; (2)略.,-19-,考向一,考向二,考向三,考向四,-20-,考向一,考向二,考向三,考向四,解题心得在求函数f(x)的单调区间时,若
7、f(x)中含有参数不容易判断其正负时,需要对参数进行分类,本例分类的标准(1)按导函数是否有零点分大类;(2)在大类中再按导函数零点的大小比较分小类;(3)在小类中再按零点是否在定义域中分类.,-21-,考向一,考向二,考向三,考向四,对点训练2已知函数f(x)=ln x-mx(mR). (1)若m=1,求曲线y=f(x)在点P(1,-1)处的切线方程; (2)讨论函数f(x)在(1,e)上的单调性.,-22-,考向一,考向二,考向三,考向四,-23-,考向一,考向二,考向三,考向四,讨论函数极值点的个数 例3设函数f(x)=ln(x+1)+a(x2-x),其中aR. (1)讨论函数f(x)极
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通用版 2020 高考 数学 二轮 复习 专题 函数 导数 2.4
链接地址:https://www.77wenku.com/p-110519.html