(通用版)2020版高考数学大二轮复习专题三第1讲等差数列与等比数列课件理
《(通用版)2020版高考数学大二轮复习专题三第1讲等差数列与等比数列课件理》由会员分享,可在线阅读,更多相关《(通用版)2020版高考数学大二轮复习专题三第1讲等差数列与等比数列课件理(40页珍藏版)》请在七七文库上搜索。
1、第1讲 等差数列与等比数列,近五年高考试题统计与命题预测,1.(2019全国,理9)记Sn为等差数列an的前n项和.已知S4=0,a5=5,则( ) A.an=2n-5 B.an=3n-10 C.Sn=2n2-8n D.Sn= n2-2n 答案:A,2.(2019全国,理5)已知各项均为正数的等比数列an的前4项和为15,且a5=3a3+4a1,则a3=( ) A.16 B.8 C.4 D.2 解析:设等比数列an的公比为q(q0), 所以a3=a1q2=122=4.故选C. 答案:C,答案:4,5.(2019北京,理10)设等差数列an的前n项和为Sn.若a2=-3,S5=-10,则a5=
2、,Sn的最小值为 . 解析:等差数列an中,由S5=5a3=-10,得a3=-2,又a2=-3,公差d=a3-a2=1,a5=a3+2d=0,由等差数列an的性质得当n5时,an0,当n6时,an大于0,所以Sn的最小值为S4或S5,即为-10. 答案:0 -10,6.(2019江苏,8)已知数列an(nN*)是等差数列,Sn是其前n项和.若a2a5+a8=0,S9=27,则S8的值是 . 解析:an为等差数列,设公差为d,a2a5+a8=0,S9=27, 整理得a1+4d=3,即a1=3-4d, 把代入解得d=2,a1=-5. S8=8a1+28d=16. 答案:16,二、等差、等比数列的判
3、定与证明 证明数列an是等差数列或等比数列的方法 (1)证明数列an是等差数列的两种基本方法: 利用定义,证明an+1-an(nN*)为一常数; 利用等差中项,即证明2an=an-1+an+1(n2). (2)证明an是等比数列的两种基本方法:,考点1,考点2,考点3,等差、等比数列基本运算(基本元思想) 例1(1)(2018全国,理4)记Sn为等差数列an的前n项和,若3S3=S2+S4,a1=2,则a5=( ) A.-12 B.-10 C.10 D.12 (2)(2019天津和平区质检)已知等比数列an满足a1=1,a3a5=4(a4-1),则a7的值为( ) A.2 B.4 C. D.6
4、 (3)(2018全国,理17)记Sn为等差数列an的前n项和,已知a1=-7,S3=-15. 求an的通项公式; 求Sn,并求Sn的最小值.,考点1,考点2,考点3,(1)解析:因为3S3=S2+S4,所以3S3=(S3-a3)+(S3+a4),即S3=a4-a3.设公差为d,则3a1+3d=d,又由a1=2,得d=-3, 所以a5=a1+4d=-10. 答案:B (2)解析:根据等比数列的性质,得a3a5= , =4(a4-1),即(a4-2)2=0,解得a4=2. 又a1=1,a1a7= =4,a7=4. 答案:B (3)解:设an的公差为d,由题意得3a1+3d=-15. 由a1=-7
5、得d=2.所以an的通项公式为an=2n-9. 由得Sn=n2-8n=(n-4)2-16. 所以当n=4时,Sn取得最小值,最小值为-16.,考点1,考点2,考点3,考点1,考点2,考点3,对应训练1 (1)(2018北京,理9)设an是等差数列,且a1=3,a2+a5=36,则an的通项公式为 . (2)等比数列an中各项均为正数,Sn是其前n项和,且满足2S3=8a1+3a2,a4=16,则S4=( ) A.9 B.15 C.18 D.30 (3)(2018全国,理17)等比数列an中,a1=1,a5=4a3. 求an的通项公式; 记Sn为an的前n项和,若Sm=63,求m.,考点1,考点
6、2,考点3,(1)解析:an为等差数列,设公差为d, a2+a5=2a1+5d=36. a1=3,d=6. an=3+(n-1)6=6n-3. 答案:an=6n-3 (2)解析:设数列an的公比为q(q0), 答案:D,考点1,考点2,考点3,(3)解:设an的公比为q,由题设得an=qn-1. 由已知得q4=4q2,解得q=0(舍去),q=-2或q=2. 故an=(-2)n-1或an=2n-1. 由Sm=63得(-2)m=-188,此方程没有正整数解. 若an=2n-1,则Sn=2n-1. 由Sm=63得2m=64,解得m=6. 综上,m=6.,考点1,考点2,考点3,等差、等比数列的判定与
7、证明 例2(1)(2018全国,理14)记Sn为数列an的前n项和.若Sn=2an+1,则S6= . (2)(2018全国,文17)已知数列an满足a1=1,nan+1=2(n+1)an.设 求b1,b2,b3; 判断数列bn是否为等比数列,并说明理由; 求an的通项公式. (3)(2019广东省级名校联考)已知Sn是数列an的前n项和,且满足Sn-2an=n-4. 证明:Sn-n+2为等比数列; 求数列Sn的前n项和Tn.,考点1,考点2,考点3,(1)解析:Sn=2an+1, Sn-1=2an-1+1(n2). -,得an=2an-2an-1,即an=2an-1(n2). 又S1=2a1+
8、1,a1=-1. 答案:-63,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,对应训练2 (1)(2016浙江,理6)如图,点列An,Bn分别在某锐角的两边上,且|AnAn+1|=|An+1An+2|,AnAn+2,nN*,|BnBn+1|=|Bn+1Bn+2|,BnBn+2,nN*.(PQ表示点P与Q不重合)若dn=|AnBn|,Sn为AnBnBn+1的面积,则 ( ) (2)(2016全国,理17)已知数列an的前n项和Sn=1+an,其中0. 证明an是等比数列,并求其通项公式;,考点1,考点2,考点3,(1)解析:如图,延长AnA1,B
9、nB1交于P,过An作对边BnBn+1的垂线,其长度记为h1,过An+1作对边Bn+1Bn+2的垂线,其长度记为h2, 设此锐角为, 则h2=|PAn+1|sin ,h1=|PAn|sin , h2-h1=sin (|PAn+1|-|PAn|)=|AnAn+1|sin . Sn+1-Sn= |BnBn+1|AnAn+1|sin . |BnBn+1|,|AnAn+1|,sin 均为定值,Sn+1-Sn为定值. Sn是等差数列.故选A. 答案:A,考点1,考点2,考点3,考点1,考点2,考点3,等差、等比数列综合、创新题型 例3(1)(2018浙江,10)已知a1,a2,a3,a4成等比数列,且a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 通用版 2020 高考 数学 二轮 复习 专题 等差数列 等比数列 课件
链接地址:https://www.77wenku.com/p-110555.html