高考数学二轮复习椭圆学案(含解析)
《高考数学二轮复习椭圆学案(含解析)》由会员分享,可在线阅读,更多相关《高考数学二轮复习椭圆学案(含解析)(10页珍藏版)》请在七七文库上搜索。
1、椭圆考向一:椭圆定义及焦点三角形1、【2019年高考全国卷理数】已知椭圆C的焦点为,过F2的直线与C交于A,B两点若,则C的方程为ABCD【解析】如图,由已知可设,则,由椭圆的定义有在中,由余弦定理推论得在中,由余弦定理得,解得所求椭圆方程为,故选B2、【2019年高考全国卷理数】设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为_.【解析】由已知可得,设点的坐标为,则,又,解得,解得(舍去),的坐标为巩固迁移:(2018安徽皖江模拟)已知F1,F2是长轴长为4的椭圆C:1(ab0)的左、右焦点,P是椭圆上一点,则PF1F2面积的最大值为_解析解法一:PF1F2的面
2、积为|PF1|PF2|sinF1PF22a22a4,a24,PF1F2面积的最大值为2.解法二:由题意可知2a4,解得a2.当P点到F1F2距离最大时,PF1F2面积最大,此时P为短轴端点,SPF1F22cbbc.又a2b2c24,bc2,当bc时,PF1F2面积最大值为2.考向二:椭圆标准方程1、2016全国,20设圆x2y22x150的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.证明|EA|EB|为定值,并写出点E的轨迹方程;解(1)因为|AD|AC|,EBAC,故EBDACDADC.所以|EB|ED|,故|EA|EB|EA|ED|
3、AD|.又圆A的标准方程为(x1)2y216,从而|AD|4,所以|EA|EB|4.由题设得A(1,0),B(1,0),|AB|2,由椭圆定义可得点E的轨迹方程为1(y0)变式训练:【2019年高考江苏卷】如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(1、0),F2(1,0)过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1已知DF1=(1)求椭圆C的标准方程;(2)求点E的坐标【解析】(1)设椭圆C的焦距为2c.因为F1(1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=,A
4、F2x轴,所以DF2=,因此2a=DF1+DF2=4,从而a=2.由b2=a2c2,得b2=3.因此,椭圆C的标准方程为.(2)由(1)知,椭圆C:.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而BF1E=B.因为F2A=F2B,所以A=B,所以A=BF1E,从而EF1F2A.因为AF2x轴,所以EF1x轴.因为F1(1,0),由,得.又因为E是线段BF2与椭圆的交点,所以.因此.巩固迁移:与圆C1:(x3)2y21外切,且与圆C2:(x3)2y281内切的动圆圆心P的轨迹方程为_解析设动圆的半径为r,圆心为P(x,y),则有|PC1|r1,|PC2|9r.所
5、以|PC1|PC2|10|C1C2|,所以点P的轨迹是以C1(3,0),C2(3,0)为焦点,长轴长为10的椭圆,点P的轨迹方程为1.2、2014大纲卷,4已知椭圆C:1(ab0)的左、右焦点为F1,F2,离心率为,过F2的直线l交C于A,B两点若AF1B的周长为4,则C的方程为()A1 By21C1 D1解析由题意及椭圆的定义知4a4,则a,又,c1,b22,C的方程为1,选A.考向三:椭圆的几何性质1、【2019年高考北京卷理数】已知椭圆(ab0)的离心率为,则Aa2=2b2B3a2=4b2Ca=2bD3a=4b【解析】椭圆的离心率,化简得,故选B.2、2018全国,12已知F1,F2是椭
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 二轮 复习 椭圆 解析
链接地址:https://www.77wenku.com/p-113293.html