2.2.2 向量的正交分解与向量的直角坐标运算 学案(含答案)
《2.2.2 向量的正交分解与向量的直角坐标运算 学案(含答案)》由会员分享,可在线阅读,更多相关《2.2.2 向量的正交分解与向量的直角坐标运算 学案(含答案)(8页珍藏版)》请在七七文库上搜索。
1、2.2.2向量的正交分解与向量的直角坐标运算学习目标1.了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一平面向量的正交分解如果基底的两个基向量e1,e2互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.知识点二平面向量的坐标表示(1)基底:在直角坐标系xOy内,分别取与x轴和y轴方向相同的两个单位向量e1,e2.这时,我们就在坐标平面内建立了一个正交基底e1,e2.这个基底也叫做直角坐标系xOy的基底.(2)坐标分量:在坐标平面xOy内,任作一向量a(用有向线段
2、表示),由平面向量基本定理可知,存在唯一的有序实数对(a1,a2),使得aa1e1a2e2,(a1,a2)就是向量a在基底e1,e2下的坐标,即a(a1,a2),其中a1叫做向量a在x轴上的坐标分量,a2叫做a在y轴上的坐标分量.(3)若xe1ye2(x,y),则的坐标(x,y)点A的坐标(x,y).知识点三平面向量的坐标运算(1)若a(a1,a2),b(b1,b2),则ab(a1b1,a2b2),ab(a1b1,a2b2),a(a1,a2)(a1,a2).即两个向量的和与差的坐标等于两个向量相应坐标的和与差;数乘向量的积的坐标等于数乘以向量相应坐标的积.(2)若A(x1,y1),B(x2,y
3、2),则(x2x1,y2y1).即一个向量的坐标等于向量终点的坐标减去始点的坐标.(3)在直角坐标系xOy中,已知点A(x1,y1),点B(x2,y2).则线段AB中点的坐标为.1.相等向量的坐标相等.()2.在平面直角坐标系内,若A(x1,y1),B(x2,y2),则向量(x1x2,y1y2).()提示(x2x1,y2y1).3.与x轴,y轴方向相同的两个单位向量分别为:i(1,0),j(0,1).()4.当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.()题型一平面向量的坐标表示例1如图,在平面直角坐标系xOy中,OA4,AB3,AOx45,OAB105,a,b.四边形OABC为平
4、行四边形.(1)求向量a,b的坐标;(2)求向量的坐标;(3)求点B的坐标.解(1)作AMx轴于点M,则OMOAcos 4542,AMOAsin 4542.A(2,2),故a(2,2).AOC18010575,AOy45,COy30.又OCAB3,C,即b.(2).(3)(2,2).即点B的坐标为.反思感悟在表示点、向量的坐标时,可利用向量的相等、加减法运算等求坐标,也可以利用向量、点的坐标的定义求坐标.跟踪训练1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,点C在第一象限,D为AC的中点,分别求向量,的坐标.解如图,正三角形ABC的边长为2,则顶点A(0,0),B(2,0)
5、,C(2cos 60,2sin 60),C(1,),D.(2,0),(1,),(12,0)(1,),.题型二平面向量的坐标运算例2已知A(2,4),B(3,1),C(3,4).设a,b,c.(1)求3ab3c;(2)求满足ambnc的实数m,n的值;解由已知,得a(5,5),b(6,3),c(1,8).(1)3ab3c3(5,5)(6,3)3(1,8)(1563,15324)(6,42).(2)mbnc(6mn,3m8n)a(5,5),解得反思感悟向量坐标运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则可先求出向量的坐标,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.2
链接地址:https://www.77wenku.com/p-114481.html