2.3.2 向量数量积的运算律 学案(含答案)
《2.3.2 向量数量积的运算律 学案(含答案)》由会员分享,可在线阅读,更多相关《2.3.2 向量数量积的运算律 学案(含答案)(7页珍藏版)》请在七七文库上搜索。
1、23.2向量数量积的运算律学习目标1.掌握平面向量数量积的运算律及常用的公式.2.会利用向量数量积的有关运算律进行计算或证明知识点一平面向量数量积的运算律类比实数的运算律,判断下表中的平面向量数量积的运算律是否正确.运算律实数乘法向量数量积判断正误交换律abbaabba正确结合律(ab)ca(bc)(ab)ca(bc)错误分配律(ab)cacbc(ab)cacbc正确消去律abbc(b0)acabbc(b0)ac错误知识点二平面向量数量积的运算性质类比多项式乘法的乘法公式,写出下表中的平面向量数量积的运算性质.多项式乘法向量数量积(ab)2a22abb2(ab)2a22abb2(ab)2a22
2、abb2(ab)2a22abb2(ab)(ab)a2b2(ab)(ab)a2b2(abc)2a2b2c22ab2bc2ca(abc)2a2b2c22ab2bc2ca梳理与多项式乘法公式类似,平面向量数量积也有相似公式,应用公式时不要漏写数量积中的点乘符号“”1向量的数量积运算满足(ab)ca(bc)()2已知a0,且acab,则bc.()3(ab)ab.()类型一向量数量积的运算性质例1给出下列结论:若a0,ab0,则b0;若abbc,则ac;(ab)ca(bc);ab(ac)c(ab)0,其中正确结论的序号是_答案解析因为当两个非零向量a,b垂直时,ab0,故不正确;当a0,bc时,abbc
3、0,但不能得出ac,故不正确;向量(ab)c与c共线,a(bc)与a共线,故不正确;ab(ac)c(ab)(ab)(ac)(ac)(ab)0,故正确反思与感悟向量的数量积ab与实数a,b的乘积ab有联系,同时有许多不同之处例如,由ab0并不能得出a0或b0.特别是向量的数量积不满足结合律跟踪训练1设a,b,c是任意的非零向量,且互不平行,给出以下说法:(ab)c(ca)b0;(bc)a(ca)b不与c垂直;(3a2b)(3a2b)9|a|24|b|2.其中正确的是_(填序号)答案解析(ab)c表示与向量c共线的向量,(ca)b表示与向量b共线的向量,而b,c不共线,所以错误;由(bc)a(ca
4、)bc0知,(bc)a(ca)b与c垂直,故错误;向量的乘法运算符合多项式乘法法则,所以正确类型二平面向量数量积有关的参数问题命题角度1已知向量垂直求参数值例2已知两个单位向量a,b的夹角为60,cta(1t)b,且bc,则t_.答案2解析由题意,将bcbta(1t)b0整理,得tab(1t)0,又ab,所以t2.反思与感悟由两向量垂直求参数一般是利用性质:abab0.跟踪训练2已知|a|3,|b|2,向量a,b的夹角为60,c3a5b,dma3b,求当m为何值时,c与d垂直考点平面向量数量积的应用题点已知向量夹角求参数解由已知得ab32cos 603.若cd,则cd0,cd(3a5b)(ma
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3
链接地址:https://www.77wenku.com/p-114484.html