2.3.1 向量数量积的物理背景与定义-2.3.2 向量数量积的运算律 学案(含答案)
《2.3.1 向量数量积的物理背景与定义-2.3.2 向量数量积的运算律 学案(含答案)》由会员分享,可在线阅读,更多相关《2.3.1 向量数量积的物理背景与定义-2.3.2 向量数量积的运算律 学案(含答案)(10页珍藏版)》请在七七文库上搜索。
1、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律学习目标1.了解平面向量数量积的物理背景,即物体在力F的作用下产生位移s所做的功.2.掌握平面向量数量积的定义,理解其几何意义.3.会用两个向量的数量积求两个向量的夹角以及判断两个向量是否垂直.4.掌握平面向量数量积的运算律及常用的公式.知识点一向量的夹角两个向量夹角的定义(1)已知两个非零向量a,b,作a,b,则AOB称作向量a和向量b的夹角,记作a,b,并规定它的范围是0a,b.在这个规定下,两个向量的夹角被唯一确定了,并且有a,bb,a.(2)当a,b时,我们说向量a和向量b互相垂直,记作ab.(3)在
2、讨论垂直问题时,规定零向量与任意向量垂直.知识点二向量在轴上的正射影向量在轴上的正射影已知向量a和轴l(如图).作a,过点O,A分别作轴l的垂线,垂足分别为O1,A1,则向量叫做向量a在轴l上的正射影(简称射影),该射影在轴l上的坐标,称作a在轴l上的数量或在轴l的方向上的数量.a在轴l上正射影的坐标记作al,向量a的方向与轴l的正向所成的角为,则由三角函数中的余弦定义有al|a|cos .知识点三向量的数量积(内积)向量数量积的定义|a|b|cosa,b叫做向量a和b的数量积(或内积),记作ab,即ab|a|b|cosa,b.知识点四向量数量积的性质两个向量内积有如下重要性质(1)如果e是单
3、位向量,则aeea|a|cosa,e.(2)abab0,且ab0ab.(3)aa|a|2或|a|.(4)cosa,b(|a|b|0).(5)|ab|a|b|.知识点五平面向量数量积的运算律(1)向量数量积的运算律abba(交换律).(a)b(ab)a(b)(数乘结合律).(ab)cacbc(分配律).(2)平面向量数量积的运算性质多项式乘法向量数量积(ab)2a22abb2(ab)2a22abb2(ab)2a22abb2(ab)2a22abb2(ab)(ab)a2b2(ab)(ab)a2b2(abc)2a2b2c22ab2bc2ca(abc)2a2b2c22ab2bc2ca思考若abbc,是否
4、可以得出结论ac?答案不可以.已知实数a,b,c(b0),则abbcac,但是abbc推不出ac.理由如下:如图,ab|a|b|cos |b|OA|,bc|b|c|cos |b|OA|.所以abbc,但是ac.1.向量a在向量b方向上的射影一定是正数.()2.若ab0,则a与b的夹角为钝角.()3.向量的数量积运算满足(ab)ca(bc).()4.(ab)ab.()题型一求两向量的数量积例1已知正三角形ABC的边长为1,求:(1);(2);(3).考点平面向量数量积的运算性质与法则题点数量积运算与求值解(1)与的夹角为60.|cos 6011.(2)与的夹角为120,|cos 12011.(3
5、)与的夹角为60,|cos 6011.反思感悟求平面向量数量积的两个方法(1)定义法:若已知向量的模及其夹角,则直接利用公式ab|a|b|cos .运用此法计算数量积的关键是正确确定两个向量的夹角,条件是两向量的始点必须重合,否则,要通过平移使两向量符合以上条件.(2)几何意义法:若已知一向量的模及另一向量在该向量方向上的投影,可利用数量积的几何意义求ab.跟踪训练1已知|a|4,|b|7,且向量a与b的夹角为120,求(2a3b)(3a2b).考点平面向量数量积的运算性质与法则题点数量积运算与求值解(2a3b)(3a2b)6a24ab9ba6b26|a|25ab6|b|2642547cos
6、120672268.题型二向量数量积的运算性质例2给出下列结论:若a0,ab0,则b0;若abbc,则ac;(ab)ca(bc);ab(ac)c(ab)0,其中正确结论的序号是_.答案解析因为当两个非零向量a,b垂直时,ab0,故不正确;当a0,bc时,abbc0,但不能得出ac,故不正确;向量(ab)c与c共线,a(bc)与a共线,故不正确;ab(ac)c(ab)(ab)(ac)(ac)(ab)0,故正确.反思感悟向量的数量积ab与实数a,b的乘积ab有联系,同时有许多不同之处.例如,由ab0并不能得出a0或b0.特别是向量的数量积不满足结合律.跟踪训练2设a,b,c是任意的非零向量,且互不
7、平行,给出以下说法:(ab)c(ca)b0;(bc)a(ca)b不与c垂直;(3a2b)(3a2b)9|a|24|b|2.其中正确的是_.(填序号)答案解析(ab)c表示与向量c共线的向量,(ca)b表示与向量b共线的向量,而b,c不共线,所以错误;由(bc)a(ca)bc0知,(bc)a(ca)b与c垂直,故错误;向量的乘法运算符合多项式乘法法则,所以正确.题型三求向量的模例3已知|a|b|5,向量a与b的夹角为,求|ab|,|ab|.解ab|a|b|cos 55.|ab|5.|ab|5.引申探究若本例中条件不变,求|2ab|,|a2b|.解ab|a|b|cos 55,|2ab|5.|a2b
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.3.1 向量数量积的物理背景与定义-2.3 2.3 向量 数量 物理 背景 定义
链接地址:https://www.77wenku.com/p-114486.html