第二章 平面向量 章末复习 学案(含答案)
《第二章 平面向量 章末复习 学案(含答案)》由会员分享,可在线阅读,更多相关《第二章 平面向量 章末复习 学案(含答案)(9页珍藏版)》请在七七文库上搜索。
1、章末复习1向量的运算:设a(x1,y1),b(x2,y2).向量运算法则(或几何意义)坐标运算向量的线性运算加法ab(x1x2,y1y2)减法ab(x1x2,y1y2)数乘(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0a(x1,y1)向量的数量积运算ab|a|b|cos (为a与b的夹角),规定0a0,数量积的几何意义是a的模与b在a方向上的正射影的数量的积abx1x2y1y22.两个定理(1)平面向量基本定理定理:如果e1,e2是一平面内的两个不平行的向量,那么该平面内的任一向量a,存在唯一的一对实数a1,a2,使aa1e1a2e2.基底
2、:把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底(2)平行向量基本定理如果ab,则ab,反之,如果ab且b0,则一定存在唯一一个实数,使ab.3向量的平行与垂直a,b为非零向量,设a(x1,y1),b(x2,y2),ab有唯一实数使得ba(a0)x1y2x2y10abab0x1x2y1y20题型一向量的线性运算例1如图所示,在ABC中,P是BN上的一点,若m,则实数m的值为_答案解析设,则m(m1),.与共线,(m1)0,m.反思感悟平行向量基本定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题跟踪训练1在ABC中
3、,E为线段AC的中点,试问在线段AC上是否存在一点D,使得,若存在,说明D点位置;若不存在,说明理由解假设存在D点,使得.,所以(),所以,即,所以,所以,所以当点D为AC的三等分点时,.题型二向量的数量积运算例2已知a(cos ,sin ),b(cos ,sin ),且|kab|akb|(k0)(1)用k表示数量积ab;(2)求ab的最小值,并求出此时a与b的夹角的大小解(1)由|kab|akb|,得(kab)23(akb)2,k2a22kabb23a26kab3k2b2,(k23)a28kab(13k2)b20.|a|1,|b|1,k238kab13k20,ab.(2)ab.由函数的单调性
4、可知,f(k)在(0,1上单调递减,在1,)上单调递增,当k1时,f(k)minf(1)(11),此时a与b的夹角的余弦值cos ,又0180,60.反思感悟数量积运算是向量运算的核心,利用向量数量积可以解决以下问题:(1)设a(x1,y1),b(x2,y2),abx1y2x2y10,abx1x2y1y20.(2)求向量的夹角和模的问题设a(x1,y1),则|a|;两向量夹角的余弦(0,a,b为非零向量)cos .跟踪训练2已知向量(3,4),(6,3),(5m,(3m)(1)若点A,B,C能构成三角形,求实数m应满足的条件;(2)若ABC为直角三角形,且A为直角,求实数m的值解(1)若点A,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二章 平面向量 章末复习 学案含答案 第二 平面 向量 复习 答案
链接地址:https://www.77wenku.com/p-114487.html