2.4.2 向量在物理中的应用 学案(含答案)
《2.4.2 向量在物理中的应用 学案(含答案)》由会员分享,可在线阅读,更多相关《2.4.2 向量在物理中的应用 学案(含答案)(7页珍藏版)》请在七七文库上搜索。
1、2.4.2向量在物理中的应用学习目标1.经历用向量方法解决某些简单的力学问题与其他一些实际问题的过程.2.体会向量是一种处理物理问题的重要工具.3.培养运用向量知识解决物理问题的能力.知识点一向量的线性运算在物理中的应用(1)用向量解决力的问题,通常把向量的起点平移到同一个作用点上.(2)向量在解决涉及速度、位移等物理量的合成与分解时,实质就是向量的线性运算.知识点二向量的数量积在物理中的应用物理上力的做功就是力在物体前进方向上的分力与物体位移的乘积,即W|F|s|cosF,s,功是一个实数,它可正可负,也可以为零.力的做功涉及两个向量及这两个向量的夹角,它的实质是向量F与s的数量积.知识点三
2、向量方法解决物理问题的步骤用向量理论讨论物理学中的相关问题,一般来说分为四个步骤(1)问题转化,即把物理问题转化为数学问题.(2)建立模型,即建立以向量为载体的数学模型.(3)求解参数,即求向量的模、夹角、数量积等.(4)回答问题,即把所得的数学结论回归到物理问题.思考物理问题中有哪些量是向量?它们与向量的哪些运算相关?答案物理中的向量:物理中有许多量,比如力、速度、加速度、位移都具有大小和方向,因而它们都是向量.力、速度、加速度、位移的合成就是向量的加法,因而它们也符合向量加法的三角形法则和平行四边形法则;力、速度、加速度、位移的分解也就是向量的分解,运动的叠加也用到了向量的加法.动量mv是
3、数乘向量.力所做的功就是作用力F与物体在力F的作用下所产生的位移s的数量积.1.功是力F与位移s的数量积.()2.力的合成与分解体现了向量的加减法运算.()3.某轮船需横渡长江,船速为v1,水速为v2,要使轮船最快到达江的另一岸,则需保持船头方向与江岸垂直.()4.求力F1和F2的合力可按照向量加法的平行四边形法则.()题型一向量的线性运算在物理中的应用例1(1)在重300 N的物体上系两根绳子,这两根绳子在铅垂线的两侧,与铅垂线的夹角分别为30,60(如图),求重物平衡时,两根绳子拉力的大小.解如图,两根绳子的拉力之和,且|300 N,AOC30,BOC60.在OAC中,ACOBOC60,A
4、OC30,则OAC90,从而|cos 30150(N),|sin 30150(N),所以|150(N).答与铅垂线成30角的绳子的拉力是150 N,与铅垂线成60角的绳子的拉力是150 N.(2)帆船比赛是借助风帆推动船只在规定距离内竞速的一项水上运动,如果一帆船所受的风力方向为北偏东30,速度为20 km/h,此时水的流向是正东,流速为20 km/h.若不考虑其他因素,求帆船的速度与方向.解建立如图所示的平面直角坐标系,风的方向为北偏东30,速度为|v1|20 km/h,水流的方向为正东,速度为|v2|20 km/h,设帆船行驶的速度为v,则vv1v2.由题意,可得向量v1(20cos 60
5、,20sin 60)(10,10),向量v2(20,0),则帆船的行驶速度为vv1v2(10,10)(20,0)(30,10),所以|v|20(km/h).因为tan (为v和v2的夹角,且为锐角),所以30,所以帆船向北偏东60的方向行驶,速度为20 km/h.反思感悟利用向量法解决物理问题有两种思路,第一种是几何法,选取适当的基底,将题中涉及的向量用基底表示,利用向量运算法则,运算律或性质计算.第二种是坐标法,通过建立平面直角坐标系,实现向量的坐标化,转化为代数运算.跟踪训练1河水自西向东流动的速度为10 km/h,小船自南岸沿正北方向航行,小船在静水中的速度为10 km/h,求小船的实际
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.4
链接地址:https://www.77wenku.com/p-114490.html