2017-2018学年内蒙古赤峰市松山区高二(上)期末数学试卷(文科)含详细解答
《2017-2018学年内蒙古赤峰市松山区高二(上)期末数学试卷(文科)含详细解答》由会员分享,可在线阅读,更多相关《2017-2018学年内蒙古赤峰市松山区高二(上)期末数学试卷(文科)含详细解答(23页珍藏版)》请在七七文库上搜索。
1、1(5分)已知复数z(i是虚数单位),则z的实部和虚部的比值为()ABC8D82(5分)函数f(x)x33x+1在闭区间3,0上的最大值、最小值分别是()A1,1B1,17C3,17D9,193(5分)双曲线虚轴的一个端点为M,两个焦点为F1、F2,F1MF2120,则双曲线的离心率为()ABCD4(5分)平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为()AB4C4D65(5分)用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除则假设的内容是()Aa,b都能被5整除Ba,b有1个不能被5整除Ca不能被5整除Da,b都不能被5整除6(5分)在A
2、BC中,已知a2bcosC,那么这个三角形一定是()A等边三角形B直角三角形C等腰三角形D等腰直角三角形7(5分)下列命题正确的个数有()(1)命题“pq为真”是命题“pq为真”的必要不充分条件;(2)命题“xR,使得x2+x+10”的否定是:“对xR,均有x2+x+10”;(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(yy1)(x2x1)(xx1)(y2y1)来表示;(4)在数列an中,a11,Sn是其前n项和,且满足Sn+1+2,则an是等比数列;(5)若函数f(x)x3+ax2bx+a2在x1处有极值10,则a4,b11A1个B2个C3个D4个8(5分)
3、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()ABC4+2D4+9(5分)已知椭圆C:+1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为()A+1B+y21C+1D+110(5分)已知函数f(x)的导函数f(x)的图象如图所示,那么函数f(x)的图象最有可能的是()ABCD11(5分)已知点P是抛物线y24x上的一个动点,则点P到点A(0,2)的距离与点P到y轴的距离之和的最小值为()A2BCD12(5分)已知函数f(x)xlnxaex(e为自然对数的底数)有两个极值点,则实数a的取值范
4、围是()AB(0,e)CD(,e)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13(5分)曲线ylnx在点(e,f(e)处的切线方程为 14(5分)已知点(1,1)是椭圆某条弦的中点,则此弦所在的直线方程为: 15(5分)已知命题p:“x1,2,3x2a0”,命题q:“xR,x2+2ax+2a0”,若命题“p且q”是真命题,则实数a的取值范围是 16(5分)在R上的可导函数f(x)x3+ax2+2bx+c,当x(0,1)时取得极大值,当x(1,2)时取得极小值,则的范围是 三、解答题(本大题共5小题,共70分
5、.解答应写出文字说明、证明过程或演算步骤.)17(10分)已知正项数列an的前n项和为Sn,且Sn、an、1成等差数列(1)证明数列an是等比数列;(2)若bnlog2an+2,求数列的前n项和为Tn18(12分)ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)c()求C;()若c,ABC的面积为,求ABC的周长19(12分)如图,四棱锥PABCD中,ABCD为矩形,PAD为等腰直角三角形,APD90,平面PAD平面ABCD,AB1,AD2,E,F分别是PC和BD的中点(1)证明:EF面PAD; (2)证明:面PDC面PAD;(3
6、)求四棱锥PABCD的体积20(14分)如图,抛物线C:y22px的焦点为F,抛物线上一定点Q(1,2)(1)求抛物线C的方程及准线l的方程;(2)过焦点F的直线(不经过Q点)与抛物线交于A,B两点,与准线l交于点M,记QA,QB,QM的斜率分别为k1,k2,k3,问是否存在常数,使得k1+k2k3成立?若存在,求出的值;若不存在,说明理由21(12分)已知函数f(x)ax1+lnx,其中a为常数(1)当a(,)时,若f(x)在区间(0,e)上的最大值为4,求a的值;(2)当a时,若函数g(x)|f(x)|存在零点,求实数b的取值范围请考生在22、23两题中任选一题作答,如果多做,则按所做的第
7、一题计分22(10分)已知圆锥曲线C:(为参数)和定点A(0,),F1,F2是此圆锥曲线的左、右焦点()以原点O为极点,以x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程;()经过点F1,且与直线AF2垂直的直线l交此圆锥曲线于M、N两点,求|MF1|NF1|的值选修4-5:不等式选讲23已知函数f(x)|2x1|+|x+1|(1)求函数f(x)的值域M;(2)若aM,试比较|a1|+|a+1|,的大小2017-2018学年内蒙古赤峰二中高二(上)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的
8、)1(5分)已知复数z(i是虚数单位),则z的实部和虚部的比值为()ABC8D8【分析】利用复数代数形式的乘除运算化简,分别求出z的实部和虚部,则答案可求【解答】解:z,z的实部和虚部分别为,比值为故选:A【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题2(5分)函数f(x)x33x+1在闭区间3,0上的最大值、最小值分别是()A1,1B1,17C3,17D9,19【分析】求导,用导研究函数f(x)x33x+1在闭区间3,0上的单调性,利用单调性求函数的最值【解答】解:f(x)3x230,x1,故函数f(x)x33x+13,1上是增函数,在1,0上是减函数又f(3)17,f
9、(0)1,f(1)1,f(1)3故最大值、最小值分别为3,17;故选:C【点评】本题考点是导数法求函数最值此类解法的步骤是求导,确定极值点,研究单调性,求出极值与区间端点的函数值,再比较各数的大小,选出最大值与最小值3(5分)双曲线虚轴的一个端点为M,两个焦点为F1、F2,F1MF2120,则双曲线的离心率为()ABCD【分析】根据双曲线对称性可知OMF260,在直角三角形MOF2中可得tanOMF2,进而可得b和c的关系式,进而根据a求得a和b的关系式最后代入离心率公式即可求得答案【解答】解:根据双曲线对称性可知OMF260,tanOMF2,即cb,ab,e故选:B【点评】本题主要考查了双曲
10、线的简单性质本题利用了双曲线的对称性4(5分)平面截球O的球面所得圆的半径为1,球心O到平面的距离为,则此球的体积为()AB4C4D6【分析】利用平面截球O的球面所得圆的半径为1,球心O到平面的距离为,求出球的半径,然后求解球的体积【解答】解:因为平面截球O的球面所得圆的半径为1,球心O到平面的距离为,所以球的半径为:所以球的体积为:4故选:B【点评】本题考查球的体积的求法,考查空间想象能力、计算能力5(5分)用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除则假设的内容是()Aa,b都能被5整除Ba,b有1个不能被5整除Ca不能被5整除Da,b都不能被5整除【分析
11、】反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的【解答】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”故选:D【点评】反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧6(5分)在ABC中,已知a2bcosC,那么这个三角形一定是()A等边三角形B直角三角形C等腰三角形D等腰直角三角形【分析】先根据余弦定理表示出cosC,代入整理即可得到bc从而知是等腰三角形【解答】解:a2bcosC2
12、ba2a2+b2c2b2c2因为b,c为三角形的边长bcABC是等腰三角形故选:C【点评】本题主要考查余弦定理的应用属基础题7(5分)下列命题正确的个数有()(1)命题“pq为真”是命题“pq为真”的必要不充分条件;(2)命题“xR,使得x2+x+10”的否定是:“对xR,均有x2+x+10”;(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(yy1)(x2x1)(xx1)(y2y1)来表示;(4)在数列an中,a11,Sn是其前n项和,且满足Sn+1+2,则an是等比数列;(5)若函数f(x)x3+ax2bx+a2在x1处有极值10,则a4,b11A1个B2个C
13、3个D4个【分析】对于(1),由复合命题的真值表加以判断;对于(2),直接写出特称命题的否定加以判断;对于(3),化直线方程的两点式为整式方程,说明命题正确;对于(4),由数列递推式得到2an+1an(n2),求出a2后说明,命题错误;对于(5),求导数,利用函数在x1处有极值10,得到两个条件f(1)10和f'(1)0,然后利用方程组求解a,b【解答】解:(1),“pq为真命题”是p和q均为真命题而“pq为真命题”只要p和q中至少有一个真命题即可,故命题“pq为真”是命题“pq为真”的充分不必要条件,命题(1)错误;(2)命题“xR,使得x2+x+10”的否定是:“对xR,均有x2+
14、x+10”,命题(2)错误;(3)经过两个不同的点P1(x1,y1)、P2(x2,y2)的直线都可以用方程(yy1)(x2x1)(xx1)(y2y1)来表示,命题(3)正确;(4)在数列an中,a11,Sn是其前n项和,且满足Sn+1+2,即2Sn+1Sn+4,取nn1,得2SnSn1+4(n2),两式作差得:2an+1an(n2),由Sn+1+2,且a11求得,则an不是等比数列,命题(3)错误;(5)若函数f(x)x3+ax2bx+a2在x1处有极值10,则a4,b11,正确由函数的导数为f'(x)3x2+2axb,函数f(x)x3+ax2bx+a2在x1处有极值10,f(1)10
15、且f'(1)0即,解得或当a3,b3时,f'(x)3x26x+33(x1)20,此时函数单调递增,此时函数没有极值,不满足条件经检验值当a4,b11时,满足条件,命题(5)正确正确的命题是2个故选:B【点评】本题考查了命题的真假判断与应用,考查了等比关系的确定,训练了利用导数求函数的最值,是中档题8(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()ABC4+2D4+【分析】几何体是三棱柱与半圆柱的组合体,根据三视图判断三棱柱的高及底面为等腰直角三角形的相关几何量的数据,判断半圆柱的高及底面半径,把数据代入棱锥与圆柱的体积公式计算可得
16、【解答】解:由三视图知:几何体是三棱柱与半圆柱的组合体,且三棱柱与半圆柱的高都是2,三棱柱的一侧面为圆柱的轴截面,三棱柱的底面为等腰直角三角形,且腰长为2,半圆柱的底面半径为1,几何体的体积V222+1224+故选:D【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是关键9(5分)已知椭圆C:+1(ab0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若AF1B的周长为4,则C的方程为()A+1B+y21C+1D+1【分析】利用AF1B的周长为4,求出a,根据离心率为,可得c1,求出b,即可得出椭圆的方程【解答】解:AF1B的周长为
17、4,AF1B的周长|AF1|+|AF2|+|BF1|+|BF2|2a+2a4a,4a4,a,离心率为,c1,b,椭圆C的方程为+1故选:A【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题10(5分)已知函数f(x)的导函数f(x)的图象如图所示,那么函数f(x)的图象最有可能的是()ABCD【分析】由导函数图象可知,f(x)在(,2),(0,+)上单调递减,在(2,0)上单调递增;从而得到答案【解答】解:由导函数图象可知,f(x)在(,2),(0,+)上单调递减,在(2,0)上单调递增,故选:A【点评】本题考查了导数的综合应用,属于中档题11(5分)已知点P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 内蒙古 赤峰
链接地址:https://www.77wenku.com/p-114762.html