1.2.7 二次函数的图象和性质——增减性和最值 学案(含答案)
《1.2.7 二次函数的图象和性质——增减性和最值 学案(含答案)》由会员分享,可在线阅读,更多相关《1.2.7 二次函数的图象和性质——增减性和最值 学案(含答案)(6页珍藏版)》请在七七文库上搜索。
1、1.2.7二次函数的图象和性质增减性和最值学习目标1.了解二次函数的定义.2.掌握二次函数的图象及增减性和最值知识链接1函数yx22x3的对称轴为x1,该函数的递增区间为(1,),递减区间为(,1)2函数yx2的最小值为0.预习导引二次函数f(x)ax2bxc(a0,xR),当a0(a0)时,在区间(,上递减(递增),在,)上递增(递减),图象曲线开口向上(下),在x处取到最小(大)值f(),这里b24ac.点(,)叫作二次函数图象的顶点.题型一求二次函数的解析式例1已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值是8,试确定此二次函数解析式解方法一利用二次函数一般式设f(x
2、)ax2bxc(a0)则由得ba,则2ac1,即c2a1.代入整理得a24a,解得a4,或a0(舍去)b4,c7.因此所求二次函数解析式为y4x24x7.方法二利用二次函数顶点式设f(x)a(xm)2n(a0)f(2)f(1),抛物线对称轴为x,即m.又根据题意函数有最大值为n8,yf(x)a(x)28,f(2)1,a(2)281.解之得a4.f(x)4(x)284x24x7.方法三利用两根式由已知f(x)10的两根为x12,x21.故可设f(x)1a(x2)(x1)(a0),即f(x)ax2ax2a1.又函数有最大值8,8.解之得a4.所求函数解析式为f(x)4x24x7.规律方法用待定系数
3、法求二次函数的解析式时,解析式的设法有三种形式,即f(x)ax2bxc(一般式)、f(x)a(xx1)(xx2)(两根式)、f(x)a(xm)2n(顶点式)跟踪演练1已知f(x)为二次函数,且f(x1)f(x1)2x24x.求f(x)的解析式解设f(x)ax2bxc(a0),则f(x1)a(x1)2b(x1)c,f(x1)a(x1)2b(x1)c,又f(x1)f(x1)2x24x,2ax22bx2a2c2x24x,f(x)x22x1.题型二二次函数的增减性例2f(x)4x2mx5在区间2,)上是递增函数,求m的取值范围解函数的顶点横坐标为x,又函数在区间2,)上是递增函数,2,即m16,故m的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 1.2
链接地址:https://www.77wenku.com/p-115022.html