2.5.2 形形色色的函数模型 学案(含答案)
《2.5.2 形形色色的函数模型 学案(含答案)》由会员分享,可在线阅读,更多相关《2.5.2 形形色色的函数模型 学案(含答案)(6页珍藏版)》请在七七文库上搜索。
1、2.5.2形形色色的函数模型学习目标1.会利用已知函数模型解决实际问题.2.能建立函数模型解决实际问题预习导引1解决函数应用问题的基本步骤利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原这些步骤用框图表示如图:2数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述解决学生疑难点_题型一用已知函数模型解决问题例1通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后
2、学生的注意力开始分散,分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力(f(x)值越大,表示接受的能力越强),x表示提出和讲授概念的时间(单位:min),可有以下的公式:f(x)(1)开始后多少分钟,学生的接受能力最强?能维持多长时间?(2)开讲后5min与开讲后20min比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13min时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题?解(1)当0x10时,f(x)0.1x22.6x430.1(x13)259.9.故f(x)在(0,10上单调递增,最大值为f(10)0.1(3)259.959;当1
3、6x30时,f(x)单调递减,f(x)31610759.因此,开讲后10min,学生达到最强的接受能力(值为59),并维持6min.(2)f(5)0.1(513)259.959.96.453.5,f(20)3201074753.5f(5)因此,开讲后5min学生的接受能力比开讲后20min强一些(3)当0x10时,令f(x)55,则0.1(x13)24.9,(x13)249.所以x20或x6.但0x10,故x6.当16x30时,令f(x)55,则3x10755.所以x17.因此,学生达到(或超过)55的接受能力的时间为1761113(min),所以老师来不及在学生一直达到所需接受能力的状态下讲
4、授完这道难题规律方法解决已给出函数模型的实际应用题,关键是考虑该题考查的是哪种函数,并要注意定义域,然后结合所给模型,列出函数关系式,最后结合其实际意义作出解答解决此类型函数应用题的基本步骤是:第一步:阅读理解,审清题意读题要做到逐字逐句,读懂题中的文字叙述,理解叙述所反映的实际背景在此基础上,分析出已知是什么,所求是什么,并从中提炼出相应的数学问题第二步:根据所给模型,列出函数关系式根据问题的已知条件和数量关系,建立函数关系式,在此基础上将实际问题转化为一个函数问题第三步:利用数学的方法将得到的常规函数问题(即数学模型)予以解答,求得结果第四步:再将所得结论转译成具体问题的解答跟踪演练1统计
5、表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为:yx3x8(0x120)已知甲、乙两地相距100千米当汽车以40千米/时的速度匀速行驶时,从甲地到乙地要耗油多少升?解当x40时,汽车从甲地到乙地行驶了2.5(小时),要耗油2.528.75(升),即当汽车以40千米/时的速度匀速行驶时,从甲地到乙地耗油28.75升题型二建立函数模型解决实际问题例2提高过江大桥的车辆通行能力可改善整个城市的交通状况在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.5
链接地址:https://www.77wenku.com/p-115024.html