3.2.3 诱导公式(一) 学案(含答案)
《3.2.3 诱导公式(一) 学案(含答案)》由会员分享,可在线阅读,更多相关《3.2.3 诱导公式(一) 学案(含答案)(7页珍藏版)》请在七七文库上搜索。
1、3.2.3诱导公式(一)学习目标1.了解三角函数的诱导公式的意义和作用.2.理解诱导公式的推导过程.3.能运用有关诱导公式解决一些三角函数的求值、化简和证明问题知识链接1对于任意一个角,与它终边相同的角的集合应如何表示?答所有与终边相同的角,连同在内,可以构成一个集合:S|k360,kZ,即任何一个与角终边相同的角,都可以表示成角与整数个周角的和2设为任意角,则2k,2,的终边与的终边之间的对称关系.相关角终边之间的对称关系2k与终边相同与关于原点对称与关于x轴对称2与关于x轴对称与关于y轴对称预习导引1诱导公式一四(其中kZ)(1)公式一:sin(2k)sin,cos(2k)cos,tan(
2、2k)tan.(2)公式二:.sin()sin,cos()cos,tan()tan.(3)公式三:sin()sin,cos()cos,tan()tan.(4)公式四:sin()sin,cos()cos,tan()tan.2诱导公式一四的记忆方法k(kZ)的三角函数值,等于的同名函数值,前面添上一个把看成锐角时原函数值的符号简记为“函数名不变,符号看象限”.题型一给角求值问题例1求下列各三角函数式的值:(1)sin1320;(2)cos;(3)tan (945)解(1)方法一sin1320sin (3360240)sin240sin (18060)sin60.方法二sin1320sin(4360
3、120)sin(120)sin (18060)sin60.(2)方法一coscoscoscos ()cos.方法二coscoscoscos.(3)tan (945)tan945tan (2252360)tan225tan (18045)tan451.规律方法此问题为已知角求值,主要是利用诱导公式把任意角的三角函数转化为锐角的三角函数求解如果是负角,一般先将负角的三角函数化为正角的三角函数跟踪演练1求sincos(nZ)的值解当n为奇数时,原式sinsinsincos.当n为偶数时,原式sincossincossin.综上,原式.题型二给值求值问题例2已知cos (75),且为第四象限角,求si
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.2
链接地址:https://www.77wenku.com/p-115125.html